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Abstract. Artificial intelligence in computer vision has focused on improving test 

performance using techniques and architectures related to deep neural networks. 

However, improvements can also be achieved by carefully selecting the training 

dataset images. Environmental factors, such as light intensity, affect the image’s 

appearance and by choosing optimal factor levels the neural network’s performance 

can improve. However, little research into processes which help identify optimal 

levels is available. This research presents a case study which uses a process for 

developing an optimised dataset for training an object detection neural network. 

Images are gathered under controlled conditions using multiple factors to construct 

various training datasets. Each dataset is used to train the same neural network and 

the test performance compared to identify the optimal factors. The opportunity to 

use synthetic images is introduced, which has many advantages including creating 

images when real-world images are unavailable, and more easily controlled factors. 
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1. Introduction 

Object detection has been successfully implemented in many applications, such as 

autonomous vehicle object avoidance [1]. Although many cases have good test 

performance, there is potential for further improvements by using an optimised training 

dataset, which is important to consider as it is one of the fundamental tools used during 

training. When a training dataset is created, various images of the object of interest are 

gathered usually without considering how environmental factors affect the final test 

performance. Environmental factors greatly affect the appearance of an image and 

therefore affect the appearance of image features, which in turn can affect the test 

performance. These affects are something current research has not fully investigated. 

This research investigates how environmental factors affect the test performance of 

a deep neural network (DNN) being trained to detect various construction machines. The 

process identifies their affect and how an optimal level can be found. The research shows 

a training dataset can be created which improves the performance of a DNN. It also 

briefly introduces how the same datasets can be replicated using synthetic data. 

It was hypothesised that different factors will affect the performance in either a 

positive or negative manner. By selecting the best factor levels the performance can be 

increased compared to a dataset with random distributions of factor levels.  

 
1 Corresponding Author. c.newman@lboro.ac.uk 

Training a Deep Neural Network 

Advances in Manufacturing Technology XXXIV
M. Shafik and K. Case (Eds.)
© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/ATDE210005

15



2. Background 

Object detection can be achieved using multiple tools, however DNNs are a popular 

choice as they can achieve fast speeds and increased accuracy. Multiple DNNs can be 

used and fall into two categories: single-stage or two-stage detectors. Single-stage 

detectors, such as You Only Look Once (YOLO) [2], perform bounding box regression 

and classification in one network. Two-stage detectors, for example R-CNN [3], isolate 

bounding boxes and then perform classification with separate networks. Although single-

stage detectors are typically faster, it usually comes with a sacrifice to the test accuracy. 

Additionally, there are multiple network architectures which are commonly used as the 

base architecture of the DNN being trained, such as ResNet [4]. 

Training DNNs uses a dataset of images split into at least two parts: training and 

testing. The test dataset contains images which accurately represent the target domain, 

and the training dataset contains various images of the object of interest in different 

scenarios. Datasets are publicly available for computer vision tasks, such as object 

detection and semantic segmentation, and cover various applications, for example 

general objects in ImageNet [5] and autonomous vehicles [6]. Public datasets cover few 

applications and so it is common for new datasets to be made specific to the developed 

application, for example detecting construction machines [7]. While any dataset can be 

used to successfully train a DNN there is no guarantee it will achieve optimal 

performance. Typically, training datasets are created using a process which does not 

consider the distribution of factors that affect the appearance of images and if there are 

any interaction between the factors. Some factors are loosely considered, for example 

vehicle datasets drive around different streets encompassing various scenarios [6], but 

do not consider the effect of these on the test performance. Therefore, a dataset may be 

using images taken under suboptimal conditions and negatively affecting the training 

performance of the DNN.   

Furthermore, a dataset can be created using synthetic images created using computer 

programs by either altering existing real-world images [8], combing real-world images 

with 3D models of objects [9] or rendering images from 3D simulations [10]. 

Environmental factors can also be considered when developing synthetic datasets, along 

with simulation factors related to the process used to generate the images. Synthetic 

datasets have more investigations into the factors but are limited and do not consider 

factor interactions. 

3. Data Collection Methodology: Real-world controlled environment 

The following dataset was developed to test how different factors affect the 

performance of a DNN. A scale model environment was used to implement and control 

the factors; background environment, light intensity, and occlusion. By using a 

controlled environment, each factor level was known and different combinations of 

factor levels were gathered. The objects of interest which have been used in the example 

dataset are three construction machines: excavator, wheel loader, and dump truck. 

Multiple scenes were created where objects were placed and each factor was varied, 

as demonstrated in Figure 1, whilst minimising the movement of objects to ensure the 

features of the images changed primarily from altering each factor. The training and test 

set images were gathered by placing objects in the environment, taking images under 
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each light intensity, adding in occlusion, retaking the images, changing the background, 

and repeating the process. The training set used 191 combinations of machines. 

 

Figure 1. Diagram illustrating the process in which the images for the dataset were taken in order to control 

the three factors whilst minimising the movement of objects. 

There were two background environments created to take images for each 

background. The first environment represented a quarry using a 3D rendered backdrop 

of a rock wall, sand as a ground material, and rocks as extra objects. The second 

environment was a forest with a backdrop of trees, soil as the ground material and wood 

as extra objects. Each background environment is illustrated in Figure 2.  

 

Figure 2. Images of the dump truck and excavator on different backgrounds. Left: Quarry, Right: Forest. 

Light intensity had three levels created using a single light source which had its 

position changed to alter the intensity of light incident on the objects, as demonstrated in 

Figure 3. Figure 3 also shows how occlusion can be achieved using the environment. 

 

Figure 3. Example scenes under each light condition and occlusion status. Left Column: Low lighting, 

Middle Column: Medium lighting, Right Column: High lighting. Top Row: Without occlusion, Bottom Row: 

With Occlusion. 

The change in light intensity had a varying affect with each background due to the 

properties of each material. To quantify the change in intensity the RGB values for each 

pixel was totaled and averaged for each background test set. This illustrates the relative 

change in intensity, because when the light intensity increases the RGB values increase 

towards values of [255, 255, 255]. The average intensity value for each background is 

presented in Table . 

Table . Average intensity value for each light category across each test set background. 

Background Low Intensity Medium Intensity High Intensity 
Quarry 3.0x108 6.1x108 6.8x108 

Forest 7.0x107 1.8x108 5.0x108 

1
1
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4. Dataset Evaluation and Analysis 

In total, the training and test set had 2796 and 681 unique images respectively, each 

labelled with the machine labels: “Loader”, “Dumper”, and “Excavator”. The training 

images were split into 60 sub-datasets containing 191 images encompassing various 

levels of each factor. The background was split into three levels having either the camera 

remain stationary in the quarry environment creating only one background, the camera 

moving ten times within the quarry environment making 1 scenario, or the camera 

moving but with an even split across the quarry and forest environment. For lighting 

either one of the three light intensities were used or a 33% mix of the three. For occlusion 

the sub-datasets had either 0%, 25%, 50%, 75%, or 100% of the images with occlusion. 

Each sub-dataset was used to successfully train a YOLOv2 [2] network with ResNet-

18 [4] as the base architecture, and then tested on the same test set, which had an even 

split of images across each background, light intensity and with and without occlusion. 

The test performance was determined using the standard metric of Mean Average 

Precision (mAP50). This produced a value between 0 and 100, where 100 is the highest 

performance. Transfer learning [11] can improve training performance and time, 

therefore a network pre-trained on the ImageNet dataset [5] from the MATLAB deep 

learning toolbox [12] was used. Each network was trained for 50 epochs at a learning 

rate of 1x10-3, followed by 10 epochs at 1x10-4 for finetuning. Table 2, 3 and 4 present 
the results for the 1 Background, 1 Scenario and 2 Scenarios categories respectively. 

Table 2. mAP50 for each dataset using “1 Background”. Light Intensity VS percentage of images with occlusion. 

Lighting 0% 25% 50% 75% 100% 
Low 42.3 43.1 45.9 43.2 49.4 

Medium 45.9 52.8 48.9 47.6 49.2 

High 36.3 43.4 46.7 50.0 53.8 

33% Mix 39.8 46.6 47.0 57.9 49.0 

Table 3. mAP50 for each dataset using “1 Scenario”. Light Intensity VS percentage of images with occlusion. 

Lighting 0% 25% 50% 75% 100% 
Low 50.7 48.7 46.3 42.6 50.0 

Medium 49.2 56.6 52.0 54.0 52.6 

High 49.9 53.8 56.1 50.6 52.2 

33% Mix 41.3 45.4 50.2 50.7 53.4 

Table 4. mAP50 for each dataset using “2 Scenarios”. Light Intensity VS percentage of images with occlusion. 

Lighting 0% 25% 50% 75% 100% 
Low 49.4 51.2 49.8 49.9 49.2 

Medium 62.0 58.7 58.9 60.2 59.6 

High 54.9 57.4 57.5 61.0 56.8 

33% Mix 61.6 53.0 58.8 52.9 54.7 

 

An Analysis of Variance test (ANOVA) was performed to help identify which 

factors had the most significant affect on the test performance and whether any factors 

interacted which might then need optimizing together. The p-values produced by the 

ANOVA test are presented in Table . The p-values represent the probability that the 

null-hypothesis can be accepted. In this case the null hypothesis is “the factor/interaction 

does NOT have significant affect on the test performance of the trained DNN”. It will be 

considered that any value below 0.05 (95% confidence level) will reject the null 

hypothesis and therefore the factor/interaction has significance.  

 

 

5
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Table 5. P-value results from the ANOVA test performed on the test results of each sub-dataset.  

 Background 
(B) 

Lighting 
(L) 

Occlusion 
(O) 

B*L 
Interaction 

B*O 
Interaction 

L*O 
Interaction 

P-value 0.000 0.000 0.07 0.117 0.088 0.562 

 

The ANOVA results suggest the background and light intensity factors are 

significant, however occlusion is less so. Furthermore, no interactions between factors 

are indicated. No interactions allows the optimal level to be picked by identifying the 

mean value of each factor, which can be found in Table . These suggest moving and 

increasing the number of scenarios improves performance. The light intensity should not 

be mixed with medium being the best and adding occlusion may improve performance. 

Table 6. Mean values for each factor level. 

Background 
Level 

Mean 
mAP50 

 Lighting 
Level 

Mean 
mAP50 

 Occlusion 
Level 

Mean 
mAP50 

1 Background 46.6  Low 47.4  0% 48.6 

1 Scenario 50.3  Medium 53.4  25% 50.3 

2 Scenarios 55.9  High 52.0  50% 51.5 

   33% 50.8  75% 51.7 

      100% 52.5 

Furthermore, to compare the sub-datasets performance to datasets created in a more 

conventional manner, three datasets were created which had random distribution of 

lighting and occlusion for each of the background levels. Each datasets test performance 

is in Table , which show the random datasets do outperform some sub-datasets but the 

more optimal sub-datasets perform better.  

Table 7. mAP50 for each random dataset. 

 1 Background Random 1 Scenario Random 2 Scenarios Random 
mAP50 45.3 51.0 52.4 

5. Conclusion and Future Work 

The aim of the paper was to show the investigation and process which has taken 

place to identify the affect different environmental factors have on the training of a deep 

neural network, and which factor levels are the most optimal. Various training datasets 

of construction machines have been created with different breakdowns of each factor 

level and all tested on the same test dataset. It can be concluded that some factors will 

have an effect on the final test performance, with each factor having a different 

significance on the performance, and that there will be an optimal factor level. However, 

the best performing dataset does not agree with the occlusion mean, perhaps suggesting 

that factors with less significance may not agree with the means. It was also seen that 

using the optimisation process produced optimal datasets that outperform more 

conventional dataset which have random distributions of factor levels. 

To further develop the investigation, the results can be used to create larger datasets 

based upon which factor levels perform best and worst. If the best datasets outperform 

the worst it will suggest there is more value to the data than just finding the best 

performing sub-dataset. Additionally, the same tests can be applied to synthetic datasets. 

When developing the synthetic dataset, the same environmental factors can be 

considered with more factors related to the way in which the simulation is developed, 

such as the rendering engine used. The increase in the number of factors may also be 
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common in applications with higher accuracy requirements which will be advantageous 

as there is more to investigate; however, the large number of factors can make it time 

consuming to test all possibilities. Therefore, the future work will investigate adaptations 

to the process to reduce the number of tests needed as the number of factors increases. 

The results of the tests on synthetic data may differ due to the domain gap between the 

real-world and simulation. For the current research the synthetic images will be rendered 

using a 3D simulation developed in Blender [13] to replicate the real-world controlled 

environment. Currently, the simulation environment and 3D models have been created, 

an example of which is illustrated in Figure 4.  

 

Figure 4. Examples of an image that could be generated using the Blender 3D simulation. 
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