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Knowing how to count, represent, and think about natural 
numbers is often conceptualized as an eminently human 
achievement of higher cognition and has been investigated 
as a major developmental milestone throughout the history 
of developmental science. Children’s counting knowledge 
moves through a series of lengthy and error-prone stages, 
which are commonly tracked using the give-a-number task 
(GaN; see Figure 1a; Wynn, 1992), whereby children are 
asked to give a number of objects corresponding to a spe-
cific number (e.g., “Can I have two tomatoes, please?”). At 
around 2 years, children are often considered pre-number-
knowers because they cannot give any number accurately, 
even if  they can recite the counting list.

Older children succeed in trials asking for “one,” but 
not larger numbers (1-knowers). Then, after a few months, 
they can give two when asked for “two” (2-knowers). 

After another few months, children become “3-knowers” 
and then “4-knowers.” Together, these children are often 
labelled subset knowers because their knowledge of num-
ber words remains limited to a subset of the counting 
list. Sometime around their fourth birthday, children 
can reliably give any requested number, and are consid-
ered cardinal-principle knowers (CP-knowers) because 
they know the cardinal meanings of number words in 
their counting list (e.g., Carey, 2009; Sarnecka, 2015). 
Children at this stage are assumed to fully understand 
the conceptual basis of number, including the fact that 
adding one item to a set leads to the next number word 
in the counting list (i.e., the successor function; Carey, 
2009).

An increasing number of researchers have questioned 
whether CP-knowers truly understand the conceptual 
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We also highlight that children are still learning the directional property of the 
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refinement in theoretical understanding of how children learn natural numbers.
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FIGURE 1  Numerical tasks. In the give-a-number task (a), the experimenter asks the child to give several target numerosities. After each trial, 
the child is usually asked to confirm their response (e.g., “Is this three?”). In the match-to-sample task (b), the experimenter presents and labels a 
sample picture, then asks the child to identify which of two additional pictures matches the sample. Trials vary to ask about properties of individual 
items in the set (e.g., “green” turtles) and numerical properties of the set (e.g., “four” turtles). In the size and number task (c), children view a screen 
with a set of items that, once labelled by the experimenter (e.g., “five apples”), transforms in size or number. Afterwards, children are asked whether 
the number word label has changed. In the direction task (d), the child is presented with a box containing n items. Then, the box is closed and the 
experimenter adds or removes one item using a hole on the top. The child tells the number of items that are now in the box. In the numerosity 
estimation task (e) (frequently known as fast cards), children estimate the numerosity of briefly presented visual sets

Can you put three 
fish in the bowl?

Is that three ?

(a) Give a Number Task

This picture has 
four turtles.

Point to another 
picture with  
four turtles.

quantity match 
(total contour length)

numerosity match 

(b) Match-to-Sample Task

I’m putting five 
apples in the box.

Now watch...                          
[apples shrink]

Now, are there 
five or six apples 
in the box?

(c) Size and Number Task

In this box, there 
are n balls. 

How many balls 
are in the box?

n

How many 
balls are in 
the box now?

(d) Direction Task

How many 
squares?

[2 seconds]

(e) Numerosity Estimation Task (Fast Cards)
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bases of symbolic number (Davidson et al., 2012; Le 
Corre & Carey, 2007; Sella & Lucangeli, 2020), whether 
different components of their knowledge emerge con-
currently (Slusser et al., 2013; Slusser & Sarnecka, 2011), 
and whether the GaN task is used optimally to monitor 
their number knowledge (Krajcsi, 2021). In this article, 
we review some persistent and some recent uncertainties 
about this classic description of the development of sym-
bolic number knowledge.

First, we review recent evidence revealing a parallel 
learning trajectory for children’s understanding of more 
general properties of number words (i.e., that number 
words denote the number of items in a set rather than 
referring to other nonnumerical dimensions). Second, we 
discuss methodological challenges with the GaN task, 
which also call into question the idea that development 
culminates in a sudden change sometime after children 
become 3- or 4-knowers. Third, we review evidence that 
children still struggle with mastering the successor func-
tion before and after acquiring the cardinality principle. 
Finally, we examine the relation between children’s intu-
itive number sense—the Approximate Number System 
(ANS; see Odic & Starr, 2018)—and emerging natural 
number knowledge.

W H EN DO CH ILDREN 
U N DERSTA N D TH AT N U M BER 
WORDS ARE USED TO LA BEL 
N U M EROSITIES?

Research investigating children’s developing under-
standing of individual number words, including studies 
likely to use the GaN task, often isolates numerosity as 
the quantitative dimension of interest. But with clear 
evidence that infants and young children attend to both 
numerical and nonnumerical dimensions of quantity (see 
Feigenson et al., 2004), these studies may fail to detect 
early tendencies to map number words onto representa-
tions of continuous, rather than discrete and countable, 
quantities. In fact, children who know just one or two 
number words, as determined by the GaN task, do not 
initially understand that higher number words (such as 
five or six) are similarly constrained to sets of discrete, 
countable objects (as opposed to continuous substances, 
such as water or sand; Slusser et al., 2013).

Match-to-sample tasks can be used to understand 
more fully children’s early interpretations of number 
word by, for example, pitting numerosity against non-
numerical dimensions of quantity (e.g., summed spatial 
extent measured as total surface area or contour length). 
For example, in one study, children were introduced to 
a sample picture (“This picture has five turtles”) and 
then two additional pictures (“Find another picture 
with five turtles”; Slusser & Sarnecka, 2011). One picture 
displayed the same number of items as the sample pic-
ture, but with half the overall spatial extent (five small 

turtles). The other displayed twice the number of items 
with the same overall spatial extent (10 small turtles; see 
Figure 1b). Children learned to connect number words to 
the numerosity of a set, rather than summed continuous 
spatial extent or properties of individuals in the set, only 
as they progressed through the GaN knower levels.

It can be difficult if not impossible to account for all 
relevant dimensions of quantity in any one task (espe-
cially when using sets of identically sized items in which 
dimensions of continuous quantity increase proportion-
ally with each item). However, computer animation can 
be used to manipulate the relation between continuous 
and discrete quantities.

For example, in another study (Slusser & Cravalho, 
2020), a computer-animated version of the transform 
sets task (Sarnecka & Gelman, 2004) was created to 
determine whether there is a period in development 
during which children think a change in total surface 
area should change the number word label (e.g., Slusser 
& Cravalho, 2020). In this version of the task (size and 
number task; see Figure 1c), children viewed a display of 
objects (“Look, there are five pumpkins on the screen”). 
Then the set transformed in some way, and the child was 
asked a test question (“Now, are there five or six pump-
kins?”). Half the trials introduced a transformation in 
summed spatial extent—the items doubled in total sur-
face area or shrank to half their original size. The other 
trials introduced a transformation in both number and 
summed spatial extent as one object was either added or 
removed from the set. In line with findings discussed ear-
lier, emerging evidence suggests that children do not ini-
tially understand that the number label changes if, and 
only if, the number of the items in a set change.

Together, these findings highlight the need for nu-
anced assessments that appropriately account for (rather 
than control for) other dimensions of quantity. Such as-
sessments could identify when children ascribe exclusive 
meanings to number words—individually and as a class 
of words with unique semantic constraints.

DOES TH E GaN TASK ASSESS 
CH ILDREN’S CARDINA L 
K NOW LEDGE PROPERLY?

In the original version of the GaN task (Wynn, 1990), 
the experimenter asks the child to give several target nu-
merosities (e.g., “Place five toy fishes in a large bowl”; 
see Figure  1a). After each response, the experimenter 
prompts the child to recount the given set to ensure 
that no performance error has been made. In case of 
mismatch, the experimenter asks for the same numeros-
ity again. The task starts by asking for a small number 
(e.g., one or two items) and after a successful trial, the 
experimenter requests the successive number. After an 
unsuccessful trial, the experimenter asks for a preced-
ing number until the largest number is found that has 
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been given incorrectly two of three times. This titra-
tion method defines the limit of the children’s cardinal 
knowledge. There are alternative versions of GaN task, 
but it is assumed that different versions yield equivalent 
results (Krajcsi, 2021).

Recent studies have questioned whether the GaN 
task is a reliable or valid measure of children’s cardi-
nal knowledge. First, some CP-knowers can accurately 
give only up to five, six, seven, and so forth objects, 
numbers that are smaller than the limit of their count-
ing list. Accordingly, these children can be categorized 
as 5-knowers, 6-knowers, and so on (Gunderson et al., 
2015; Marchand & Barner, 2021; Mussolin et al., 2012). 
Therefore, the transition to the status of CP-knowers ap-
pears prolonged compared to former assumptions.

Second, some reports have suggested that children 
may have partial knowledge of numbers that are beyond 
their knower level (Barner & Bachrach, 2010; Gunderson 
et al., 2015; O’Rear et al., 2020; Wagner et al., 2019). In 
this light, the titration method may fail to capture the 
limit of children’s cardinal knowledge precisely because 
numbers with partial knowledge may be categorized ei-
ther as known or unknown depending on random noise. 
Third, while it is assumed that various versions of the 
GaN task yield similar results, this is not necessarily the 
case. For example, omitting recounting instruction may 
increase performance errors (Krajcsi, 2021), which leads 
to a biased assessment of cardinal knowledge.

Fourth, evaluation methods influence the determi-
nation of children’s knower level. For example, studies 
that consider a deviation of 1 from the target number as 
a correct response (Le Corre et al., 2006) would inevi-
tably lead to a different assessment of the knower level 

than studies that require exact responses. Finally, while 
the reliability of the GaN task measured in the whole 
scale is high (i.e., it is unlikely that a child will be radi-
cally miscategorized—for example, a 1-knower will not 
be categorized as CP-knower), the reliability of the spe-
cific knower levels is low (i.e., children may get the label 
of the neighboring category—for example, a 4-knower 
may be recognized as CP-knower; Marchand & Barner, 
2021). The low reliability of specific number knowledge 
is problematic in many studies that contrast 4-knowers 
and CP-knowers.

In Figure 2, we present a more extensive list of factors 
that may influence the assessment of cardinal knowledge 
in the GaN task. All these factors should be considered 
when using the GaN task and explored to optimize the 
task to increase its reliability and validity.

DO CP- K NOW ERS M ASTER TH E 
SUCCESSOR A N D PREDECESSOR 
FU NCTIONS?

In principle, CP-knowers should understand the direc-
tional property of the counting list. That is, adding one 
item to a set leads to the next number word in the count-
ing list (i.e., successor function; n + 1), whereas remov-
ing one item leads to the preceding number word (i.e., 
predecessor function; n  −  1). Despite the cardinality 
principle being a prerequisite to learning the successor 
function (Spaepen et al., 2018), not all CP-knowers un-
derstand the successor function (Davidson et al., 2012; 
Sarnecka & Carey, 2008), and it takes approximately 
2  years after becoming CP-knowers to generalize the 

F I G U R E  2   Various factors and their variations that may influence the measured number knowledge in the give-a-number (GaN) task

GaN session

■ Series of trials
□ titration or preset series

■ Order of trials
□ e.g., increasing series, pseudorandom, titration

■ Number of repetition (optionally only around the 
number-knowledge limit)

GaN trials

■ Size of the initial set
□ e.g., 10, 15, 30

■ Follow-up question
□ e.g., recounting, confirming the 

amount, no follow-up
■ Criteria for correct response (in titration 

method)

GaN evaluation method

■ Criteria for correct response 
in a trial
□ e.g., ±1 deviation is 

allowed
■ Criteria for knowing a 

number
□ e.g., threshold of 

incorrect responses
■ Criteria for number 

knowledge
□ e.g., titration cut, 

continuous decrease, 
Bayesian method

■ Threshold for CP-knowledge
□ e.g., 4, 5, or any larger 

number



      |  269CHILDREN’S NUMBER LEARNING

successor function to all the numbers (i.e., infinity; 
Cheung et al., 2017).

Recently, researchers devised a direction task (see 
Figure  1d) in which the experimenter showed children 
an opaque box containing few (e.g., two) or many (e.g., 
eight) objects (Sella & Lucangeli, 2020; Sella et al., 2020). 
Then, the experimenter added (n + 1) or removed (n − 1) 
one object from the box, and asked children to indicate 
the number of objects inside the box after the manipu-
lation. When only a few objects were inside the box, as 
in the 2 + 1 and 2 − 1 trials, children could keep track 
of individual objects and responded correctly. But when 
many objects were in the box, children could not track 
individual objects, but instead had to know that adding 
or removing one object led to the preceding or succes-
sive number word, respectively. Most CP-knowers cor-
rectly responded n + 1 when one item was added to a box 
containing few or many objects. When one object was 
removed from the box, CP-knowers correctly responded 
n − 1 if the box contained few objects, but failed when 
the box initially contained many objects. In case of error, 
CP-knowers frequently responded n + 1 even though an 
object was removed from, not added to, the box.

Two reasons could explain these findings. On the 
one hand, when objects in the box could not be tracked, 
some CP-knowers applied a blind counting up procedure 
that led to the wrong response in n − 1 trials, but to the 
correct response in the n + 1 trials, thereby overestimat-
ing children’s mastering of the successor function and, 
more generally, their understanding of the directional 
property of the counting list. On the other hand, CP-
knowers knew that the correct response was n − 1 when 
an object was removed from a set, but they could not 
inhibit the strong tendency to count up or lacked suffi-
cient experience moving up and down on the counting 
list. Accordingly, some CP-knowers attempted to get 
to n − 1 by counting from one but stopped too early at 
n − 2. Others responded with n + 2 because they knew 
that n + 1 could not be the right response. The analysis of 
responses revealed within-subject variability, with some 
children failing in some trials but surprisingly offering 
correct response on others. Taken together, these results 
suggest inexperience in accessing the counting list rather 
than a lack of conceptual understanding.

Overall, it appears that CP-knowers, despite a perfect 
performance in the GaN task, have a limited compre-
hension of the directional property of the counting list 
(conceptual knowledge) or show a fragile ability to move 
up and down the list (procedural knowledge). These abil-
ities should not be overlooked because they are relevant 
for establishing exact symbolic numerical knowledge. 
Accordingly, accuracy on n  −  1 trials of the direction 
task emerged, among other numerical skills, as one of 
the best correlates of number word magnitude compari-
son, after controlling for domain-general processes (i.e., 
memory). Moreover, a short training on indicating the 
preceding and successive number in the counting list 

significantly improved numerical skills in preschool 
children (Xu & Lefevre, 2016).

W H AT IS TH E ROLE OF TH E 
A NS IN NATU RA L N U M BER 
ACQU ISITION?

Before children achieve mastery over natural number 
concepts, they also have access to at least two other 
types of perceptual number representations: a parallel 
individuation system that allows them to represent three 
to four objects precisely, and an ANS, which is broadly 
shared ontologically with other animals and which rep-
resents any number quickly but imprecisely (Feigenson 
et al., 2004; Piazza, 2010). An ongoing matter of debate is 
whether and if the ANS contributes to children’s natural 
number concepts (see Carey, 2009; Krajcsi et al., 2020; 
Levine & Baillargeon, 2016; Piantadosi et al., 2012; van-
Marle, 2015).

Le Corre and Carey (2007) famously argued that the 
ANS plays no role in the initial acquisition of natural 
numbers, while the parallel individuation system does 
(see also Carey & Barner, 2019). They found that, even 
among children who were classified as CP-knowers, 
some could not attach number words to quickly pre-
sented sets of four or more dots (fast cards [FC] task)—
terming them “nonmappers”—suggesting that the link 
between number words and the ANS emerges only after 
natural numbers are fully acquired. The ANS has also 
been argued to not be a necessary contributor to natu-
ral number concepts because, unlike natural numbers, 
the real-numbered format of the ANS lacks a succes-
sor function (Carey, 2009; Carey & Barner, 2019). Also, 
the mapping between the ANS and number words even 
later in life is malleable and susceptible to feedback (e.g., 
even adults label a set of 20 dots as sometimes “fifteen,” 
sometimes “twenty,” sometimes “twenty-five”), making 
the ANS potentially too imprecise to inspire exact num-
ber concepts (Izard & Dehaene, 2008; Sullivan & Barner, 
2013).

Both ideas have recently been challenged. In one study 
(Shusterman et al., 2016), the FC task (see Figure 1e) pro-
duced unreliable results: Children who were tracked lon-
gitudinally sometimes appropriately gave higher number 
words for more numerous arrays of dots and sometimes 
failed to do so, contrary to the idea that the FC task mea-
sures a reliable nonmapper status. In another study (Odic 
et al., 2015), children who failed to give higher number 
words for more numerous displays of dots nevertheless 
produced higher approximate number estimates if the ex-
perimenter gave them a number word and asked them to 
quickly tap a particular number of times without count-
ing. Hence, it is unclear whether the nonmappers truly 
exist or if they are an artifact of an unreliable FC task.

Even outside the FC task, in another study 
(Shusterman et al., 2016), children’s ANS acuity 
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improved in tandem with the acquisition of CP-Knower 
status, while in yet another study (Gunderson et al., 
2015), children used number words approximately even 
outside of their knower level. Finally, individual dif-
ferences in the ANS longitudinally predicted number 
word knowledge, both before and after cardinal prin-
ciple acquisition, in another study (vanMarle et al., 
2016). Together, these findings suggest that the link 
between the approximate and exact number represen-
tations might emerge earlier than originally proposed 
(Le Corre & Carey, 2007), and that the lack of mapping 
among some CP-knowers may be a by-product of the 
task rather than of the children’s ability.

The real-numbered nature of the ANS might also be 
a red herring: While this format would preclude the 
inference of the successor function and the cardinality 
principle, other key features of the natural numbers—
that they refer to numbers, the arithmetic operations 
that can be carried over them—might all be supported 
by the ANS. For example, in studies, the ANS might 
be vital in children attending to number over other 
magnitudes (Fuhs et al., 2018; Silver et al., 2020; van-
Marle, 2015), and adding and subtracting within the 
ANS shows the same ordinal asymmetry as children 
do when reasoning about successors and predeces-
sors (de Hevia et al., 2014; Macchi Cassia et al., 2012). 
Especially when considered alongside the idea that 
CP-knowers might not have actually mastered the full 
range of natural number meanings (Davidson et al., 
2012), the ANS might play a more long-term and nu-
anced role in helping guide children toward several key 
features of number words. This is especially import-
ant since other systems, such as parallel individuation, 
only implicitly represent numbers (Feigenson et al., 
2004). Together, these findings point to a potentially 
key role of the ANS in guiding children toward some of 
the necessary features natural numbers must possess, 
even though, as a result of its analog format, the ANS 
may not be sufficient for the acquisition of full-blown 
natural number concepts.

DISCUSSION

Recent findings shine new light on the acquisition of 
numerical knowledge in young children, revealing a 
more complex developmental trajectory than previously 
thought. In Table 1, we summarize the reviewed evidence, 
adding questions that need to be further investigated.

Children apparently show an understanding of 
small number words. But the content of these number 
representations is surprisingly nonnumeric: They still 
conflate number words with other adjectives and quanti-
fiers, such as the color or size of individual items in a set. 
Only at later stages, do children understand that number 
words refer exclusively to the number of elements in the 
set. Titration, different evaluation methods, recounting 

instruction, and low reliability of the GaN task compro-
mise the assessment of children’s numerical knowledge, 
making it difficult to establish the presence of a sud-
den change in performance when children become CP-
knowers. Despite a ceiling performance in the GaN task, 
children still commit errors when performing the direc-
tion task, thereby displaying prolonged learning before 
mastering the successor and predecessor functions. To 
the extent that the GaN task measures children’s knowl-
edge of cardinality, this principle is not the final one 
children learn when acquiring number words. Finally, 
while natural number concepts are unlikely to be derived 
solely from the ANS, emerging work has shown that sub-
set knowers already display a link between the two sys-
tems, much earlier than previously suggested.

We maintain that designing valid, reliable, and 
strategy-revealing behavioral tasks represents a first step 
in answering these and other outstanding research ques-
tions. We need tasks that measure specific numerical 
knowledge while minimizing the influence of other com-
ponents that are closely related to the target skill. For 
instance, before adding or removing one element from 
the box in the unit task, we must ensure that children 
recall the number of objects currently within the box 
(i.e., memory check). This simple question minimizes 
the influence of memory and inattention on numerical 
performance. We must ensure that the chosen numerical 
tasks have high test-retest reliability and internal consis-
tency. Newly designed tasks should be administered at 
least twice on consecutive days to assess their reliability. 
Finally, open-answer tasks, rather than forced-choice 
tasks, can uncover children’s reasoning and strategy. For 
instance, the pattern of error in the GaN task reveals 
how subset knowers may lack the exact numerical mean-
ing of “eighth,” but they never give “two” because they 
know that “eight” is not “two.”

Researchers can use the newly designed behavioral 
tasks with other methods within longitudinal and ex-
perimental research designs. Eye-tracking technology 
can provide novel insights on cognitive processing by 
measuring the focus of attention when completing nu-
merical tasks. The repeated assessment in short time 
intervals, as in microgenetic studies, would unveil 
how numerical skills develop in relation to each other, 
and determine the order in which knowledge is con-
structed and whether clusters of children follow dif-
ferent developmental trajectories (Cahoon et al., 2021). 
Additionally, these learning pathways may vary within 
cultures and cross-culturally, depending on many fac-
tors, such as the linguist structure (e.g., single-plural 
distinction; see Almoammer et al., 2013) and the 
presence of other numerical representations to which 
number words can be mapped (e.g., Arabic numerals; 
see Jiménez Lira et al., 2017; Marinova et al., 2021). 
Combining diverse research methods within appro-
priate research designs would improve our theoretical 
understanding of how children learn natural numbers.



      |  271CHILDREN’S NUMBER LEARNING

TA B L E  1   Summary of the main knowledge components and related outstanding questions

Knowledge component Task(s) and findings Outstanding questions

Number words refer to numerosity Match-to-sample task 
(Figure 1b)

Size and number task 
(Figure 1c)

Subset knowers often do 
not understand that 
number words refer 
exclusively to numerosity 
(not characteristics of 
individual items or other 
dimensions of quantity, 
such as total surface area)

Do children initially conflate number words with other adjectives 
or quantifiers?

What is the role of other representations, such as the ANS, of 
quantity in guiding children’s attention towards numerosity?

The cardinality principle Give-a-number task (GaN; 
Figure 1a)

Children understand the first 
four numbers relatively 
slowly (subset knowers), 
then they seemingly 
understand how any 
larger numbers should 
be handled (cardinality 
principle-knowers). Still, 
several assumptions 
behind the task do not 
hold, and some results 
that rely on the GaN 
task may not be entirely 
reliable or valid

When assessing children’s numerical knowledge, what systematic 
biases may be introduced with various versions of the GaN 
task?

What is the largest number that subset knowers know if it is not 4?
Are new numbers learned gradually? If so, what directs this 

gradual learning?
What is the ideal version of the GaN task that can capture the 

latest key findings of numerical knowledge development?

Directional property of the count 
list

Direction task (Figure 1d)
Children ultimately learn 

that adding one item to 
the set corresponds to 
the next number word 
in the counting list (i.e., 
n + 1; successor function), 
whereas removing 
one item leads to the 
preceding number word 
(i.e., n − 1; predecessor 
function)

CP-knowers perform well 
on n + 1 trials for small 
and large numerical 
quantities. On the n − 1 
trials, performance 
is accurate for small 
numerical quantities, 
but for large numerical 
quantities, children 
frequently respond by 
saying n + 1

Do successor and predecessor functions follow different 
developmental trajectories?

Does responding with n + 1 in the n − 1 trials of the Direction 
task reflect a blind counting forward procedure (i.e., lack of 
conceptual understanding)? Alternatively, do children know 
that they should move backwards in the counting list to answer 
the n − 1 trials but struggle to complete the task (i.e., lack of 
experience in accessing and moving backwards on the counting 
list)? Following, what is the role of domain-general factors such 
as inhibition and (verbal) working memory when completing the 
Direction task?

Why are there symmetries between ordinality effects in counting 
and in the ANS?

Mapping number words to other 
number representations

Numerosity estimation task 
(Figure 1e)

CP-Knowers frequently fail 
to map number words to 
quickly presented sets 
of 4 or more dots, but 
succeed when asked to 
“produce” a number of 
taps when given a specific 
number

Do “nonmappers” truly exist, or are they an artifact of the fast 
cards task?

Why are there correlations between growth in ANS and acquisition 
of cardinality principle?

Abbreviation: ANS, Approximate Number System.
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