This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Box plots

PLEASE CITE THE PUBLISHED VERSION

https://www.teachsecondary.com/

PUBLISHER
Aceville Publications

VERSION

VoR (Version of Record)

PUBLISHER STATEMENT
Reproduced with the permission of the publisher. https://www.teachwire.net

LICENCE
CC BY-NC-ND 4.0

REPOSITORY RECORD

Foster, Colin. 2019. "Box Plots". Loughborough University. https://hdl.handle.net/2134/17100311.v1.

In this lesson, students examine two box plots showing marks obtained by two classes. First, they have to interpret the box plots, working out what the plots are showing and how this enables them to draw conclusions about the two that could have led to these plots and explore which chang to their data points affect features of the box plots and which don't. In this way, students become increasingly fluent with connecting the data points to the representation.

How can we interpret the meaning of the features of a box plot?

STARTER ACTIVITY

of some data?

What can you work out from it? What question do you have?
This figure is available at teachwire.net/
mathsks 4 boxplots to display on the board or hand out on paper.
Students should be able to make statements about the median, range and interquartile range for each class and also make comparisons between the two classes, such as that Class Bon average did better bu few low outliers. They might note that the vertical axis does not begin at zero.

MAIN ACTIVITY

Q Your task is to produce some possible data that would fit these
box plots. I would like you to be as accurate as you can.
First, students will need to interrogate the given box plots a bit more carefully, and paper copie would be helpful for this (the box plots are available at teachwire.net/mathsks4boxplots).

The numerical statistics are:

	Minimum	Lower Quartile	Median	Upper Quartile	Maximum	Range
	Class A	58	61	66	78	83
Class B	43	66.5	72.5	79	82	39

Students will need to decide how many students to place in each class. It might be helpful to suggest this, to make the task less tedious. For example, a class could have 10,11 o 12 students in it.
A possible simplification is for all students to be given integer marks. This
would mean that in Class B the median mark of 72.5 is not the actual mark of any student. For example there could be two middle and 75 . Note that the same kind of thing could be true in Class A, even though 66 is an integer.
When students complete
this task, ask them what
they could change in their data that would not affect any part of the box plot. If students complete all of this, they could make u represent their own created set of data, and hen swap with a partner and see what data their partner can create that leads to the same box plot.

ADDITIONAL RESOURCES
dents could draw their own box plots using Desmos desmos.com or JASP jasp-stats.org

GOING DEEPER onfident students coul find out about different discretens data Theries for to similar results, provided that the number of data points is large, but can give quite different
answers for small n. answers for small n .

BACKTO BASICS students need to revise how to create them, they might find the BBC bbc.in/2VPUUHR useful

ABOUT OUR EXPERT Colin Foster is a Reader in Mathematics Education at Che Mathematics Education Centre at Loughborough
University. He has written many books and articles for mathematics teachers. His website is
www.foster77.co.uk
and on Twitter he is

