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Structurally Optimized Neural Fuzzy Modelling
for Model Predictive Control

Xiaoyan Hu, Yu Gong, Dezong Zhao, Senior Member, IEEE, and Wen Gu

Abstract—This paper investigates the local linear model tree
(LOLIMOT), a typical neural fuzzy model, in the multiple-
input-multiple-output model predictive control (MPC). In the
conventional LOLIMOT, the structural parameters including
centres and variances of its Gaussian kernels are set based
on equally dividing the input data space. In this paper, after
the structural parameters are initially obtained from the
input space partition, they are optimized by the gradient
descent search, from which the space partitions are further
adjusted. This makes it better for the model structure to
fit the input data statistics, leading to improved modelling
performance with small model size. The MPC based on the
proposed structurally optimized LOLIMOT is then implemented
and verified with both numerical and diesel engine plants.
Validation results show that the proposed MPC has significantly
better controlling performance than the MPC based on the
conventional LOLIMOT, making it an attractive solution in
practice.

Index Terms—Neural fuzzy network, local linear model tree,
multiple-input-multiple-output nonlinear system, model predic-
tive control.

I. INTRODUCTION

MODEL predictive control (MPC) has been used in many
fields including robotics, vehicle, aerospace and power

electronics [1]. The performance of the MPC well depends
on modelling the target plant because of the model-based
optimization to obtain the control actions [2]. Both linear MPC
[3] and nonlinear MPC (NMPC) [4] have been proposed.

The neural network model have been well investigated in the
NMPC [5]. Of particular interest is the neural fuzzy network
which consists of a number of linear subsystems with mem-
bership functions, where the membership functions describe
fuzzy rules to combine the linear subsystems [6]. The neural
fuzzy models have been widely used in the control system.
Examples include the MPC with finite horizon based on the
fuzzy discrete systems [7], the output feedback predictive
control based on the Takagi–Sugeno (T–S) fuzzy model [8]
[9], the NMPC based on self-feedback fuzzy network [10],
and the adaptive T–S fuzzy model-based predictive controller
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[11]. The neural fuzzy network is also used in the intelligent
control [12], [13].

A number of neural fuzzy models have been proposed
including the interval type-2 radial basis function neural
network [14], T-S fuzzy system [15], data driven modelling
based on fuzzy neural network [16] and recurrent fuzzy neural
network [17]. This paper investigates the local linear model
tree (LOLIMOT) [18] [19], a typical neural fuzzy model.
The LOLIMOT consists of a number of neurons, where each
neuron includes a Gaussian kernel and a local linear struc-
ture. Every Gaussian kernel defines a membership function
representing a fuzzy rule. The performance of the LOLIMOT
relies on the model structure including the model size (i.e. the
neuron number), the centers and variances of the Gaussian
kernels. In the LOLIMOT, the incremental tree structure is
used to divide the input data space into grid partitions. Every
partition determines the structural parameters of one neuron
that the centers and variances of the corresponding Gaussian
kernel are the centers and proportional to the widths of the
partition, respectively. The LOLIMOT starts with a single
neuron, and repeatedly generates new neurons by dividing an
existing partition equally into two until the satisfactory mod-
elling performance is reached. While equally dividing existing
partitions provides a simple way to generate new neurons in
the LOLIMOT, the resulted neuron structure may not match
the input data statistics. Non-appropriately structured neurons
often lead to large model size, resulting in over-fitting and high
complexity. This is because large neuron number complicates
the optimization in the MPC.

The structure of the neural fuzzy model can be optimized
with the particle swarm optimization (PSO) [20] and genetic
algorithm (GA) [21]. These approaches however demand high
complexity. In this paper, we propose a simple yet efficient
way based on the gradient descent search to optimize the
LOLIMOT structure. The proposed structurally optimized
LOLIMOT achieves good performance with small model size,
making it particularly attractive for the NMPC. The main
contribution of this paper is listed as following:
• A novel gradient descent search approach is proposed to

optimize centers and variances of the Gaussian kernels,
based on which the input space partitions are further
adjusted. This leads to more efficient Gaussian kernels
in the LOLIMOT.

• The NMPC based on the proposed structurally optimized
LOLIMOT model is implemented.

• The proposed NMPC is verified by both numerical data
and experimental data from the turbocharged diesel en-
gine platform, where significantly better control perfor-
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mance is observed in both cases.

II. NEURAL FUZZY NETWORK

A. System model

The multiple-input-multiple-output (MIMO) neural fuzzy
model consisting of M neurons as shown in Fig. 1, where

ŷi(k + 1) =

M∑
m=1

ŷmi (k + 1), i = 1, · · · , q (1)

is the i-th model output, ŷmi (k + 1) is the i-th output of the
m-th neuron, and ξ(k) is the model input vector:

ξ(k) = [ŷ>1 (k), ..., ŷ>q (k),u>1 (k), ...,u>p (k)]> (2)

with

ŷi(k) = [ŷi(k), ŷi(k − 1), ..., ŷi(k − ny,i + 1)]>

uj(k) = [uj(k), uj(k − 1), ..., uj(k − nu,j + 1)]>
(3)

where i = 1, 2, ..., q, j = 1, 2, ..., p, ny,i and nu,j are the time
lags for the feedback output and input signals, respectively.
The input dimension of the model is the number of elements
in ξ(k) which is given by

L =

q∑
i=1

ny,i +

p∑
j=1

nu,j (4)
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Fig. 1: The MIMO neural fuzzy network

The m-th neuron is shown in Fig. 2 which consists of one
Gaussian kernel and q local linear models (LLM). The input
vector of the m-th Gaussian kernel is ξ(k), and the output is

φm(k) =
µm(k)∑M
j=1 µj(k)

(5)

where

µm(k) =exp

(
−1

2
·
L∑
l=1

(
(ξl(k)− cm,l)2

σ2
m,l

)

)
(6)

cm,l and σm,l are the center and standard deviation of the
Gaussian kernel in the l-th dimension respectively, and ξl(k)

𝝃(𝑘)

. . .

𝐿𝐿𝑀𝟏
𝒎

𝐿𝐿𝑀𝟐
𝒎

𝐿𝐿𝑀𝒒
𝒎

×

×

×

∅𝑚(𝑘)

. . .

ො𝑦1
𝑚(𝑘 + 1)

ො𝑦2
𝑚(𝑘 + 1)

ො𝑦𝑞
𝑚(𝑘 + 1)

. . .෨𝝃(𝑘)

ො𝑦𝐿𝐿𝑀𝑞

𝑚 (𝑘 + 1)

ො𝑦𝐿𝐿𝑀1

𝑚 (𝑘 + 1)

ො𝑦𝐿𝐿𝑀2

𝑚 (𝑘 + 1)‘1’

Fig. 2: The m-th neuron of the MIMO neural fuzzy network

is the l-th element of ξ(k). On the other hand, the input of
the LLM is the augmented input vector which is given by

ξ̃(k) = [1, ξ>(k)]>, (7)

and the output of the i-th LLM is given by

ŷmLLMi
(k + 1) = ω>m,i · ξ̃(k) (8)

where ωm,i is weight vector for the i-th LLM:

ωm,i = [ωm,i,0, am,i,1, am,i,2, ..., bm,i,1, bm,i,2, ...]
> (9)

where coefficients a and b correspond to the corresponding
feedback output yi and data input uj , respectively, and ωm,i,0
is the offset.

The Gaussian kernel determines the contribution of the
corresponding LLM, and so the i-th output of the m-th neuron
is obtained by

ŷmi (k + 1) = φm(k) · ŷmLLMi
(k + 1) (10)

As shown in Fig. 1, summing the i-th output from all neurons
gives the i-th output of the overall neural-fuzzy system:

ŷi(k + 1) =

M∑
m=1

φm(k) · ŷmLLMi
(k + 1) (11)

B. Local linear model tree

The LOLIMOT describes an efficient way to realize the
neural fuzzy model, in which the centres and variances of
the Gaussian kernels are set based on dividing the input
space of the training data. Assume there are K snapshots of
training data set denoted as {u(k), y(k+ 1)}, k = 1, · · · ,K,
where u(k) = [u1(k), · · · , up(k)]> and y(k + 1) = [y1(k +
1), · · · , yq(k + 1)]>. In the LOLIMOT with M neurons, the
input data space is divided into M hyper rectangular partitions
based on the training data set. Every partition corresponds to
one neuron, where the center and variance of a partition decide
the center and variance of the corresponding Gaussian kernel.
The training starts with a single partition (which corresponds
to a single neuron), and more partitions are created iteratively
until the global loss function satisfies the requirement or the
maximum number of neurons is reached.
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The global loss function is defined as

G =

q∑
i=1

Gi (12)

where Gi is loss function for the q-th output:

Gi = γi ·
K∑
k=1

[yi(k + 1)− ŷi(k + 1)]2, (13)

γ1, ..., γq are the weight coefficients that γ1+γ2+ ...+γq = 1.
Suppose there are m neurons (or m partitions) at the (i− 1)-
th iteration. At the i-th iteration, if G is higher than the pre-
defined threshold and the maximum number of neurons is not
reached, the current partition with the highest φm defined in
(5) is selected to be equally divided into two partitions. Fig. 3
illustrates how the selected partition is divided along the j-th
input dimension equally into two new partitions, m1 and m2,
corresponding to two new neurons m1 and m2, respectively.
As shown in Fig. 3, Aj and Bj are vertex coordinate vectors
that determine the selected partition, and A′j and B′j are new
vertex coordinate vectors of the new partitions.

𝑚1

𝑩𝑗

𝑨𝑗

𝑚2

𝑨𝑗
′

𝑩𝑗
′

Fig. 3: Split on the j-th dimension for the neuron

The center and standard deviation vectors of the Gaussian
kernels for the two new neurons m1 and m2 are obtained as

cm1
= (Aj +B′j) · 0.5 (14a)

cm2 = (A′j +Bj) · 0.5 (14b)

σm1
= (B′j −Aj) · η (14c)

σm2
= (Bj −A′j) · η (14d)

respectively, where η is the smoothness factor for the Gaussian
variance. The coefficient vector of the i-th LLM in (9) for the
new neuron is obtained with the weighted least squares (WLS):

ωms,i = (ζ>Qms
ζ)−1ζ>Qms

yi,ms ∈ {m1,m2} (15)

where ζ = [ξ̃>(1), · · · , ξ̃>(K)]> is the data matrix, Qms

= diag[φms
(ξ(1)), · · · , φms

(ξ(K))] is the weight matrix and
yi = [yi(2), · · · , yi(K+1)]> is the training output data vector
for the i-th output.

From (14) and (15), the global loss function G with the
newly generated neurons m1 and m2 can be obtained. Apply-
ing the above procedure to every input dimension, the partition
along the input dimension with the lowest G is then used to
generate the new neurons.

III. STRUCTURALLY OPTIMIZED LOLIMOT

In the LOLIMOT, the centers and variances of the Gaussian
kernels are chosen as the centers and widths (with the smooth
factor) of the corresponding input space partitions. However,
this may not reflect the underlying statistics of the input data,
leading to modelling performance degradation. In this section,
the centers and variances of the Gaussian kernels are further
optimized using the gradient descent search.

Like in the LOLIMOT, the centers and variances of the
Gaussian kernels are also obtained based on the input space
partition. Similarly as above, suppose there are m neurons
(corresponding to m partitions) at the (i− 1)-th iteration. As
shown in Fig. 3, at the i-th iteration, the selected partition
(with the highest φm) is equally divided into two partitions,
m1 and m2, along the j-th input dimension, respectively. The
centers and variances of the Gaussian kernels for the two new
partitions are obtained as in (14), which will be used as the
initial values for the gradient descent search.

The center and standard derivation vectors of the Gaussian
kernels corresponding to the new partition m1 and m2 are
adapted using the gradient descent search as

cms
(t+ 1) = cms

(t)− β · ∇cms (t)
G(t) (16)

σms
(t+ 1) = σms

(t)− β · ∇σms (t)
G(t) (17)

respectively, where the index t represents the t-th adaptive
iteration, β is the step size, ∇ is the gradient operator, and
ms ∈ {m1,m2} correspond to the new partitions m1 and m2,
respectively.

From (12) we have

∇cms (t)
G(t) =

∂G(t)

∂cms
(t)

=

q∑
i=1

∂Gi(t)

∂cms
(t)

(18)

∇σms (t)
G(t) =

∂G(t)

∂σms(t)
=

q∑
i=1

∂Gi(t)

∂σms(t)
(19)

where from (13) we have

∂Gi(t)

∂cms(t)
= −2·γi·

K∑
k=1

[yi(k+1)−ŷi(k+1)]·∂ŷi(k + 1)

∂cms(t)
(20)

∂Gi(t)

∂σms(t)
= −2·γi·

K∑
k=1

[yi(k+1)−ŷi(k+1)]·∂ŷi(k + 1)

∂σms(t)
(21)

Further from (5), (6) and (10), we have

∂ŷi(k + 1)

∂cms
(t)

= ŷms

LLMi
(k + 1, t)·

∂µms (k,t)
∂cms (t)

·
∑M
m=1 µm(k, t)− µms(k, t) · ∂µms (k,t)

∂cms (t)

[
∑M
m=1 µm(k, t)]2

+ ŷms

LLMi
(k + 1, t) ·

−µms(k, t) · ∂µms (k,t)
∂cms (t)

[
∑M
m=1 µm(k, t)]2

+

M∑
m=1,

m/∈{m1,m2}

ŷmLLMi
(k + 1, t) ·

−µm(k, t) · ∂µms (k,t)
∂cms (t)

[
∑M
m=1 µm(k, t)]2

(22)
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and
∂ŷi(k + 1)

∂σms(t)
= ŷms

LLMi
(k + 1, t)·

∂µms (k,t)
∂σm1(t)

·
∑M
m=1 µm(k, t)− µms

(k, t) · ∂µms (k,t)
∂σms (t)

[
∑M
m=1 µm(k, t)]2

+ ŷms

LLMi
(k + 1, t) ·

−µms
(k, t) · ∂µms (k,t)

∂σms (t)

[
∑M
m=1 µm(k, t)]2

+

M∑
m=1,

m/∈{m1,m2}

ŷmLLMi
(k + 1, t) ·

−µm(k, t) · ∂µms (k,t)
∂σms (t)

[
∑M
m=1 µm(k, t)]2

(23)

where ms is the complement of ms that ms = m1 if ms =
m2, and ms = m2 if ms = m1. From (6) we have

∂µms
(k, t)

∂cms(t)
=

[
∂µms

(k, t)

∂cms,1(t)
, · · · , ∂µms

(k, t)

∂cms,L(t)

]>
=

[
µms(k, t) · ξ1(k)− cms,1(t)

σ2
ms,1

(t)
,

· · · , µms(k, t) · ξL(k)− cms,L(t)

σ2
ms,L

(t)

]> (24)

and

∂µms
(k, t)

∂σms(t)
=

[
∂µms

(k, t)

∂σms,1(t)
, · · · , ∂µms

(k, t)

∂σms,L(t)

]>
=

[
µms(k, t) · [ξ1(k)− cms,1(t)]2

σ3
ms,1

(t)
,

· · · , µms(k, t) · [ξL(k)− cms,L(t)]2

σ3
ms,L

(t)

]>
(25)

The LLM weight vectors for the two new partitions are
updated by the WLS as in (15). Apply the Gaussian param-
eters adaptation on every input dimension, and choose the
dimension with the lowest global loss function G to divide
the selected partition for the new neurons. After the centers
and variances are adapted, the partition boundary separating
the two new partitions is adjusted. The new partition boundary
is the middle of the adapted centers of the two new partitions.
Continue generating new partitions as above until the global
loss function G is smaller than the pre-defined value G′ or
the maximum number of the neurons (Mmax) is reached. The
proposed algorithm is summarized in Algorithm 1.

IV. NEURAL FUZZY MODEL PREDICTIVE CONTROL

In this section, after the proposed structurally optimized
LOLIMOT is trained as above, it is applied in the MIMO
predictive control. The block diagram of the so-called MIMO
neural fuzzy based predictive control (MIMO-NFMPC) is
shown in Fig. 4.

Assuming the prediction horizon is Np, at time k, the
estimated plant input, the corresponding plant output and the
set point vectors are given by

u(Np)(k) = [u>(k), · · · ,u>(k +Np − 1)]> (26)

Algorithm 1: The algorithm to optimize the Gaussian
parameters in the LOLIMOT

1 Initialization;
2 Start with the first neuron;
3 while M < Mmax or G > G′ do
4 Select the neuron with the highest φm as in (5);
5 for every input dimension (j = 1 : L) do
6 Obtain the initial centers and standard

deviations for the new kernels m1 and m2 as
in (14)

7 for every gradient descent search iteration
(i = 1 : Z) do

8 Update the cm1
,cm2

,σm1
,σm2

using (16)
and (17);

9 Update the LLM-s vectors ωm1,i and ωm2,i

as in (15) based on the updated centers
and standard deviations;

10 end
11 Obtain the global loss function G for the j-th

dimension as in (12);
12 end
13 Choose the dimension with the smallest G to

divide the selected partition;
14 Adjust the partition boundary separating the two

new partitions as the middle of the two adapted
centers.

15 end

Optimizer
Plant

Neural Fuzzy Model

MIMO-NFMPC

𝒚 𝑘 + 1𝒓(𝑵𝒑)(𝑘 + 1) 𝒖(𝑘)

𝒖(𝑘 − 1)

J(𝑘 + 1)
Δ 𝒖(𝑘)

𝒚 𝑘

Fig. 4: The block diagram of the MIMO-NFMPC

y(Np)(k + 1) = [ŷ>(k + 1), · · · , ŷ>(k +Np)]
> (27)

r(Np)(k + 1) = [r>(k + 1), · · · , r>(k +Np)]
> (28)

where u(k) = [u1(k), · · · , up(k)]>, ŷ(k) =
[ŷ1(k), · · · , ŷq(k)]> and r(k) = [r1(k), · · · , rq(k)]>,
while p and q are the input and output dimension of the plant.

At time k, the plant setpoint for the next Np steps, r(Np)(k+
1), is set as in (28). By observing the current plant output y(k),
the MPC estimates the plant inputs for the next Np steps,
u(Np)(k), such that the predicted plant output based on the
trained LOLIMOT model in the future Np steps, y(Np)(k+1),
can best track the setpoints r(Np)(k+ 1). This is achieved by
minimizing the cost function

J(k + 1) =||r(Np)(k + 1)− y(Np)(k + 1)||2

+ % · ||∆u(Np)(k)||2
(29)



5

subject to

ui,min ≤ ui(j) ≤ ui,max,

∆ui,min ≤ ∆ui(j) ≤ ∆ui,max, ∀ i, j
ym,min ≤ ym(K + n) ≤ ym,max, m ∈ {1, q}, n ∈ {1, Np}

(30)

where

∆u(Np)(k) = u(Np)(k)− u(Np)(k − 1) (31)

where ||.|| is the 2-norm operator, % is the regularization factor,
and the subscripts ‘min’ and ‘max’ denote the lower and upper
bounds for the corresponding parameters.

In order to achieve the offset-free reference tracking, the
optimization in (29) is with respect to the incremental input
∆u(Np)(k) defined in (31), and the plant input can be easily
obtained as shown in Fig. 4. In the MPC, while the optimiza-
tion is for the future Np step, only the plant input at the current
time k is applied to control the plant.

The optimization of (29) is based on the proposed struc-
turally optimized LOLIMOT model. Because the optimization
is for ∆u(Np)(k), the model output (i.e. the estimated plant
output) vector for the future Np steps y(Np)(k+1) in the cost
function J(k + 1) is expressed as (see Appendix A)

y(Np)(k + 1) = Γ1(k) · ỹ(k) + Γ2(k) ·∆u(Np)(k)+

Γ3(k) ·∆ũ(k − 1)
(32)

where Γ̄1(k), Γ̄2(k) and Γ̄3(k) are matrices independent of
∆u(Np)(k), ỹ(k) and ∆ũ(k−1) are the previous model output
and incremental plant input which are given by

ỹ(k) = [ŷ>(k), · · · , ŷ>(k − nmax
y )]>

∆ũ(k − 1) = [∆u>(k − 1), · · · ,∆u>(k − nmax
u + 1)]>

(33)
respectively, where nmax

y = max{ny,i, i = 1, · · · , q}, nmax
u =

max{nu,j , j = 1, · · · , p}, ny,i and nu,j are defined in (3).
Substituting (32) into (29) results in the constraint least square
optimization which can be easily solved by existing toolboxes
such as the YALMIP [22]. On the other hand, for the off-
line LOLIMOT, the computational complexity is O(2ML4),
where M is the number of neurons and L is the input data
dimension.

V. SIMULATIONS

This section verifies the proposed MIMO-NFMPC based on
the structurally optimized LOLIMOT model. Two cases are
investigated, numerical plant and turbocharged diesel engine
platform, respectively.

The performance of modelling is measured by the normal-
ized root mean squared error (NRMSE) as

NRMSE =

q∑
i=1

γi ·

√√√√∑K
k=1(yi(k)− ŷi(k))2∑K
k=1(yi(k)− E(yi))2

(34)

where γi is the weighted factor for the i-th output that∑q
i=1 γi = 1, and E stands for expectation.
The PC with CPU Intel(R) Core(TM) i5-6500 3.20 GHz

and RAM 8.00GB is used for the simulation. The toolbox

YALMIP in MATLAB is used for the optimization in the
MPC. Simulation parameters are listed in Table I.

Mmax G′ β M Np ρ
Case 1: Numerical plant 10 0.001 0.05 2 5 20
Case 2: Engine platform: 15 0.001 0.02 2 5 15

TABLE I: Simulation Parameters.

For comparison, the results for both the proposed
LOLIMOT with the gradient-search adapted Gaussian param-
eters and the standard LOLIMOT ( [18]), denoted as GS-
LOLIMOT and LOLIMOT respectively, are shown in below
figures.

A. Numerical plant

In this case, we consider the numerical plant [23] with two
inputs and two outputs as

y1(k + 1) =0.4y1(k) +
u1(k)

1 + u21(k)
+ 0.2u21(k) + 0.5u2(k)

y2(k + 1) =0.2y2(k) +
u2(k)

1 + u22(k)
+ 0.4u32(k) + 0.2u1(k)

(35)

1) Modelling performance of the numerical plant: There
are 1200 sets of input-output pairs generated by the plant given
by (35) with the input signal u1 and u2 being randomly set as
0 or 1. The first 1000 data sets are used for the model training
and the remaining 200 data sets are used for testing.
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Fig. 5: Numerical plant training data: NRMSE vs model size

Fig. 5 and 6 show the NRMSE performance with respect to
the model size for the training and test data sets, respectively. It
is clearly shown that, for both GS-LOLIMOT and LOLIMOT,
the NRMSE performance keeps improving with larger model
size (i.e. the number of the neurons), but the performance im-
provement becomes less significant with large enough model
size. For both the training and test data sets, the proposed
GS-LOLIMOT has consistently better NRMSE performance
than its LOLIMOT counterpart. On the other hand, for the
same NRMSE, the proposed GS-LOLIMOT needs smaller
model size than the LOLIMOT. For example, as shown in
Fig. 6, to achieve NRMSE=0.2, the model sizes for the GS-
LOLIMOT and LOLIMOT are about 4 and 8, respectively.
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Fig. 6: Numerical plant test data: NRMSE vs model size

Then in this case, the GS-LOLIMOT only needs half of the
neurons to obtain the similar modelling performance of the
standard LOLIMOT. This is particular important for the MPC
because its complexity depends on the model size.

2) MPC performance of the numerical plant: The above
trained LOLIMOT model with two neurons is used in the
MPC, where the disturbances of SNR = 20 dB is added at
the plant output, the prediction horizon Np = 5, and the
regularization factor in the cost function (29) % = 20. The
control performance for the MPC based on both the GS-
LOLIMOT and LOLIMOT, denoted as MPC-GS-LOLIMOT
and MPC-LOLIMOT respectively, are illustrated.

Fig. 7 and 8 compares the tracking curves for the MPC-GS-
LOLIMOT and MPC-LOLIMOT for y1 and y2, respectively.
While in both figures the MPC-GS-LOLIMOT can better
track the setpoint variations than its the MPC-LOLIMOT
counterpart, the improvement is more obviously for y2 in Fig.
8. This is because controlling y2 is more tolerate to model
mismatch than y1 in this example.
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Fig. 7: Numerical plant: the tracking curves for y1

B. Turbocharged diesel engine platform

The diagram of the engine platform is shown in Fig. 9.
The turbocharged engine uses engine exhaust to improve the
engine through the exhaust gas re-circulation (EGR) loop. At
the exhaust manifold of the engine, part of the exhaust gas
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1
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Set points

Fig. 8: Numerical plant: the tracking curves for y2

is recirculated directly back to the intake manifold of the
engine through the EGR valve, and the rest of the exhaust
drives the variable-geometry turbocharger (VGT) which again
helps the compressor to produce higher pressured air to the
engine intake manifold. By controlling the opening positions
of the VGT vane and EGR valve, the required exhaust gas re-
circulation mass flow rate (Wegr) and manifold air pressure
(pin) can be achieved.
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Fig. 9: Diagram of the turbocharged diesel engine

In this experiment, the plant inputs are the opening positions
of the VGT vane and EGR valve, and the plant outputs are
the Wegr and pin. There is a strong coupling between the
VGT vane and EGR valve because both are driven by the
exhaust gas flow. On the other hand, the Wegr and pin are
also strongly coupled as both are affected by the VGT vane
and EGR valve. With this consideration, the inputs and output
of the neuron fuzzy model at time k (corresponding to Fig.
1) are given by ξ(k) = [p̂in(k), Ŵegr(k), uVGT(k), uEGR(k)]>

and ŷ(k+ 1) = [p̂in(k+ 1), Ŵegr(k+ 1)]> respectively, where
uVGT and uEGR are the opening positions of VGT vane and
EGR valve, respectively.

1) Modelling performance of the engine plant: There are
10, 000 plant input-output data sets are generated by the
turbocharged diesel engine simulator, with sampling frequency
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100 Hz. The first 8000 data set are used to train the neuron-
fuzzy model and the rest data set are for testing. Fig. 10 and
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Fig. 10: Diesel engine plant training data: NRMSE vs model
size
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Fig. 11: Diesel engine plant test data: NRMSE vs model size

11 compare the modelling NRMSE with respect to the model
size for the training and test data sets, respectively. For both
training and test data, the GS-LOLIMOT achieves significantly
lower NRMSE than the LOLIMOT. It is interesting to observe
in Fig. 11 that the NRMSE stops decreasing when the model
size reaches a certain value (about 5) due to overfitting. The
results verify that, with adapted Gaussian parameters, the GS-
LOLIMOT can better capture the underlying statistics of the
plant data.

2) MPC performance of the engine plant: The above
trained LOLIMOT with model size of two is applied to the
MPC. In this experiment, the prediction horizon Np = 5, and
the regularization factor in the cost function (29) % = 15.

Fig. 12 shows that the MPC-GS-LOLIMOT can signif-
icantly better track the setpoint for pin than the MPC-
LOLIMOT. For example, when the pin setpoint varies from
180 kPa to 170 kPa at time 100s, it takes about 50 s and
100 s for the MPC-GS-LOLIMOT and MPC-LOLIMOT to
converge, respectively. In other words, the proposed MPC-GS-
LOLIMOT can track this setpoint variation 50 seconds faster
than its MPC-LOLIMOT part. The improvement of the MPC-
GS-LOLIMOT over the MPC-LOLIMOT is more obviously

shown in Fig. 13 which shows the corresponding root-mean-
square-error (RMSE) defined as

√
[r(k + 1)− pin(k + 1)]2. It

is clearly shown that the MPC-GS-LOLIMOT converges not
only faster but also to a lower RMSE.
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Fig. 12: Diesel engine plant: the pin tracking curves
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Fig. 13: Diesel engine plant: the pin tracking RMSE-s perfor-
mance

Fig. 14 show the tracking curves for Wegr, where the MPC-
GS-LOLIMOT performs similarly, if not slightly better, than
the GS-LOLIMOT. Thus for this plant, Wegr is more robust
to model mismatch than pin.
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Fig. 14: Diesel engine plant: the Wegr tracking curves
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Fig. 15 and 16 show the corresponding plant input curves
for the VGT and EGR, respectively. The results also verifies
that the proposed MPC-GS-LOLIMOT can better control the
plant.

Time (s)

0 50 100 150 200 250 300

u
V

G
T

0.2

0.25

0.3

0.35

0.4

0.45

0.5

MPC-GS-LOLIMOT

MPC-LOLIMOT

Fig. 15: Diesel engine plant: The VGT input curve
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Fig. 16: Diesel engine plant: The EGR input curve

VI. CONCLUSION

This paper proposes a novel LOLIMOT with Gaussian
parameters optimized by the gradient descent search approach,
and successfully applies it in the MIMO MPC. Compared with
the standard LOLIMOT, the structurally optimized LOLIMOT
achieves lower RMSE with the same model size, or has
smaller model size with the same RMSE. The MIMO-MPC
based on the structurally optimized LOLIMOT can also better
control the target plant. While the proposed LOLIMOT is
trained offline based on the full batch of the training data,
an interesting future work is to generalize the proposed work
in the on-line case so that the LOLIMOT structure can track
the variations of the underline system.

APPENDIX A
THE DERIVATION OF (32)

The i-th model output can be expressed as

ŷi(k + 1) = [ω̃(i)]> · ξ̃(k) (36)

where ω̃(i) is corresponding weight vector defined as ω̃(i) =∑M
m=1 φm(k) · ωm,i. From (36), the i-th model output is

ŷi(k + np) = ŷi(k + np − 1)+

[ω̃(i)]> · ξ̃(k + np − 1)− [ω̃(i)]> · ξ̃(k + np − 1)
(37)

Stacking (37) for all of the model outputs (from 1 to q) in
a vector givesŷ1(k + np)

...
ŷq(k + np)

 = Ā1 ·

ŷ1(k + np − 1)
...

ŷq(k + np − 1)

+

Ā2 ·

ŷ1(k + np − 2)
...

ŷq(k + np − 2)

+ · · ·+ Ānmax
y
·

ŷ1(k + np − nmax
y )

...
ŷq(k + np − nmax

y )


+ Ānmax

y +1 ·

ŷ1(k + np − nmax
y − 1)

...
ŷq(k + np − nmax

y − 1)

+ B̄1·

∆u1(k + np − 1)
...

∆uq(k + np − 1)

+ · · ·+ B̄numax ·

∆u1(k + np − nmax
u )

...
∆uq(k + np − nmax

u )


(38)

where nmax
y and nmax

u are the maximum lags for the corre-
sponding output and input, respectively, and

Ā1 =


1− ã(1)1,1 0− ã(1)2,1 · · · 0− ã(1)q,1
0− ã(2)1,1 1− ã(2)2,1 · · · 0− ã(2)q,1

...
...

. . .
...

0− ã(q)1,1 0− ã(q)2,1 · · · 1− ã(q)q,1

 , (39)

Ā2 =


ã
(1)
1,1 − ã

(1)
1,2 ã

(1)
2,1 − ã

(1)
2,2 · · · ã

(1)
q,1 − ã

(1)
q,2

ã
(2)
1,1 − ã

(2)
1,2 ã

(2)
2,1 − ã

(2)
2,2 · · · ã

(2)
q,1 − ã

(2)
q,2

...
...

. . .
...

ã
(q)
1,1 − ã

(q)
1,2 ã

(q)
2,1 − ã

(q)
2,2 · · · ã

(q)
q,1 − ã

(q)
q,2

 · · ·
(40)

Ānmax
y +1 =


ã
(1)
1,ny,1

ã
(1)
2,ny,2

· · · ã
(1)
q,ny,q

ã
(2)
1,ny,1

ã
(2)
2,ny,2

· · · ã
(2)
q,ny,q

...
...

...
...

ã
(q)
1,ny,1

ã
(q)
2,ny,2

· · · ã
(q)
q,ny,q

; (41)

B̄1 =


b̃
(1)
1,1 b̃

(1)
2,1 · · · b̃

(1)
p,1

b̃
(2)
1,1 b̃

(2)
2,1 · · · b̃

(2)
p,1

...
... · · ·

...
b̃
(q)
1,1 b̃

(q)
2,1 · · · b̃

(q)
p,1

 · · · (42)

B̄numax =


b̃
(1)
1,nu,1

b̃
(1)
2,nu,2

· · · b̃
(1)
p,nu,p

b̃
(2)
1,nu,1

b̃
(2)
2,nu,2

· · · b̃
(2)
p,nu,p

...
... · · ·

...
b̃
(q)
1,nu,1

b̃
(q)
2,nu,2

· · · b̃
(q)
p,nu,p

 . (43)
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Finally, from (38) and with some rearrangement, we can
obtain (32), where Γ1(k) = Q−1(k) · Γ̄1(k), Γ2(k) =
Q−1(k) · Γ̄2(k) and Γ3(k) = Q−1(k) · Γ̄3(k). and

Q(k) =



Iq 0 0 · · · 0
−Ā1 Iq 0 · · · 0

... −Ā1
. . . · · ·

...

−Ānmax
y +1

...
... Iq 0

0 0 · · · −Ā1 Iq

 (44)

Γ̄1(k) =



Ā1 Ā2 · · · Ānmax
y

Ānmax
y +1

Ā2 · · · Ānmax
y

Ānmax
y +1 0

Ā3 · · · Ānmax
y +1 0 0

...
... 0

...
...

Ānmax
y +1 0

...
... 0

0
...

...
...

...
...

...
...

...
...

0 0 0 0 0


(45)

Γ̄2(k) =



B̄1 0 0 · · · · · · · · · 0
B̄2 B̄1 0 0 · · · · · · 0

... B̄2 B̄1 · · · 0 · · · 0

B̄nmax
u

...
... B̄1

...
...

...
... B̄nmax

u

...
...

. . .
...

...
...

...
...

...
...

. . . 0
0 0 · · · B̄nmax

u
· · · B̄2 B̄1


(46)

Γ̄3(k) =



B̄2 B̄3 · · · · · · B̄nmax
u

B̄3 B̄4 · · · B̄nmax
u

0
B̄4 · · · B̄nmax

u
0 0

...
... 0

...
...

B̄nmax
u

...
...

...
...

0
...

...
...

...
...

...
...

...
...

0 · · · · · · · · · 0


(47)

and Iq is the q dimensional identity matrix.
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