

This item was submitted to Loughborough's Research Repository by the author. Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Detailed Insight into Exciton Wavefunctions from Quantum Chemistry Computations

PLEASE CITE THE PUBLISHED VERSION

LICENCE

CC BY-NC 4.0

REPOSITORY RECORD

Plasser, Felix. 2021. "Detailed Insight into Exciton Wavefunctions from Quantum Chemistry Computations". Loughborough University. https://doi.org/10.17028/rd.lboro.17206073.v1.

Detailed Insight into Exciton Wavefunctions from Quantum Chemistry Computations

Felix Plasser

https://fplasser.sci-public.lboro.ac.uk

Department of Chemistry, Loughborough University

CECAM, 16 December 2021

Motivation

Computational Science – Exciton Dynamics

- Accurate description
- © Exciton-phonon coupling
- Exciton-exciton interactions
- Polaritons
- © Transport processes
- Recombination
- Insight
- © Look at some blobs of colour

Exciton wavefunctions

- ? How to understand with correlated exciton wavefunctions
 - Visualisation via electron-hole correlation plots
 - Visualisation in real space
 - Quantitative representation

- Prototypical conjugated polymer
- ► TDDFT/CAM-B3LYP computations
- ? How to analyse the states

Molecular orbital (MO) picture

- Standard picture
- → State represented via linear combination of MO transitions
- ? Meaning of +/-
- We need a different way to think about this

TDDFT output

State	ΔE	Contribution
$S_1(1^1B_u)$	2.92	$0.94 \text{ hl} + 0.28 \text{ h}_1 \text{l}_1$
$S_2(2^1 A_g)$	3.77	$0.73 \text{ hl}_1 + 0.60 \text{ h}_1 \text{l}$
$S_3(3^1A_g)$	4.12	$-0.58 \text{ hl}_1 + 0.72 \text{ h}_1 \text{l}$
$S_4(2^1B_u)$	4.44	$0.68 \text{ hl}_2 - 0.54 \text{ h}_1 \text{l}_1 + 0.29 \text{ h}_2 \text{l}$
$S_5(3^1B_u)$	4.73	$-0.50 \text{ hl}_2 - 0.30 \text{ h}_1 \text{l}_1 + 0.71 \text{ h}_2 \text{l}$

VANANA	*****
HOMO (h)	LUMO (I)
MARKANA	*****
HOMO-1 (h_1)	LUMO+1 (I ₁)
MANAGOR	****
HOMO-2 (h ₂)	LUMO+2 (I ₂)

Electron-hole picture

- Excitation viewed as electron-hole pair
- 2-dimensional correlated picture
- ? How do we construct the two-body exciton wavefunction

¹FP, *JCP* **2020**, 152, 084108.

https://fplasser.sci-public.lboro.ac.uk

Quantitative Description

Transition density matrix (1TDM)

$$D^{0I}_{\mu\nu} = \langle \Psi_0 | \, \hat{\mathbf{a}}^{\dagger}_{\mu} \hat{\mathbf{a}}_{\nu} \, | \Psi_I \rangle$$

 Ψ_0,Ψ_I Ground and excited state wavefunctions

 $\hat{a}^{\dagger}_{\mu}, \hat{a}_{\nu}$ Creation and annihilation operators

- ▶ 1TDM interpreted as matrix representation of exciton wavefunction
- 2-dimensional population analysis
- Charge transfer numbers Ω_{AB}
- → Electron-hole correlation plot

Transition density matrix

¹FP, H. Lischka, *JCTC* **2012**, 8, 2777.

²FP, M. Wormit, A. Dreuw, *JCP* **2014**, 141, 024106.

Electron-hole correlation plots

- ------
- Excitonic structure visible
- \rightarrow Hydrogen atom in a box
- ? More intuitive visualization

Exciton wavefunction

$$\chi_{exc}(r_h, r_e) = \sum_{\mu\nu} D^{0I}_{\mu\nu} \chi_{\mu}(r_h) \chi_{\nu}(r_e)$$

 $D_{\mu\nu}^{0I}$ Transition density matrix (matrix representation)

 χ_{μ} Atomic orbital

Conditional density for the excited electron

$$\rho_e^{h:A}(r_e) = \int_A \gamma^{0I}(r_h, r_e)^2 \mathrm{d}r_h$$

 $\rho_e^{h:A}(r_e)$ Conditional density for the hole localized on fragment A

S_1 state

- Overall electron and hole densities delocalized
- Conditional electron density follows hole

¹FP, ChemPhotoChem **2019**, 3, 702.

- $ightharpoonup S_1$ state
- Overall hole and electron densities

- $ightharpoonup S_1$ state
- Conditional densities

Exciton Analysis

Exciton analysis

- Interpret the 1TDM as the wavefunction χ_{exc} of the electron-hole pair
- Use as a basis for analysis

Exciton wavefunction

$$\chi_{exc}(r_h, r_e) = \sum_{\mu\nu} D^{0I}_{\mu\nu} \chi_{\mu}(r_h) \chi_{\nu}(r_e)$$

Operator expectation value

$$\langle \hat{O} \rangle = \frac{\langle \chi_{exc} | \hat{O} | \chi_{exc} \rangle}{\langle \chi_{exc} | \chi_{exc} \rangle}$$

→ Evaluate using analytic integration techniques

¹S. A. Bäppler, FP, M. Wormit, A. Dreuw, Phys. Rev. A **2014**, 90, 052521.

Exciton Analysis

Exciton size

Exciton size

$$d_{exc}^2 = \left\langle (r_e - r_h)^2 \right\rangle$$

- ► Average separation of the electron and hole quasi-particles
- © No fragment definition
- No population analysis

¹S. A. Bäppler, FP, M. Wormit, A. Dreuw, Phys. Rev. A **2014**, 90, 052521.

S_1 state

- Overall electron and hole densities delocalized
- Conditional electron density follows hole

Exciton analysis^{1,2}

- $ightharpoonup d_{exc} = 5.7 \text{ Å}$
- e-h correlation coeff. 0.45

¹S. A. Bäppler, FP, M. Wormit, A. Dreuw, *PRA* **2014**, 90, 052521.

²FP, B. Thomitzni et al., *JCC* **2015**, 36, 1609.

S_2 state

- ightharpoonup Overall electron and hole densities similar to S_1
- ► Stronger correleations between electron and hole

Exciton analysis

- $ightharpoonup d_{exc} = 4.9 \text{ Å}$
- ► e-h correlation coeff. 0.74

- $ightharpoonup S_2$ state
- Conditional densities

S_3 state

- ► Negative correleations between electron and hole
- \rightarrow Large e-h separation
- Nodal plane on **probe** thiophene

Exciton analysis

- ► $d_{exc} = 8.9 \text{ Å}$
- ► e-h correlation coeff. -0.24

- $ightharpoonup S_3$ state
- Conditional densities

Conclusions

- Analysis of correlated exciton wavefunctions
- Electron-hole correlation plots
- Real-space picture of correlations
- Quantitative analysis
- Quantification of Coulomb/exchange contributions to excitation energy¹
- ► Example applications Conjugated polymers
- Analysis of exciton bands in conjugated polymers²
- Exciton size and binding energy limitations³
- Problems in the TDDFT description of conjugated polymers⁴

▶ Other examples

- Interacting chromophores, push-pull systems, transition metal complexes, ...
- Rydberg states, double excitations, ...

https://fplasser.sci-public.lboro.ac.uk

¹P. Kimber, FP, *PCCP* **2020**, 22, 6058.

²S. A. Mewes, J.-M. Mewes, A. Dreuw, FP, *PCCP* **2016**, 18, 2548.

³S. Kraner, R. Scholz, FP, C. Koerner, K. Leo, *JCP* **2015**, 143, 244905.

⁴S. A. Mewes, FP, A. Dreuw, *JPCL* **2017**, 8, 1205.

Software

Extended wavefunction analysis toolbox.

TheoDORE - Theoretical Density, Orbital Relaxation and Exciton analysis¹

- Program package for wavefunction analysis
- → Excitons and more ...
- ► Interfaces to various quantum chemistry programs:
 Columbus, Turbomole, Orca, GAMESS, Gaussian, ADF, Terachem, DFT-MRCI, ONETEP
- Open-source

libwfa - An open-source wavefunction analysis tool library²

- ▶ Q-Chem: ADC, EOM-CC, TDDFT
- ▶ OpenMolcas: CASSCF, MS-CASPT2
- ► CFOUR

¹http://theodore-qc.sourceforge.net

²https://github.com/libwfa/libwfa https://fplasser.sci-public.lboro.ac.uk

Further reading

- ► Intro for practical computations¹
- User friendly analysis tools
- → Plotting
- → Rigorous and quantitative analysis of trends
- ► Chemical theory²
- Learn about nature and/or quantum chemical methods
- New qualitative insight

¹FP, *JCP* **2020**, 152, 084108.

²P. Kimber, FP, *PCCP* **2020**, 22, 6058.

Heidelberg

- S. A. Mewes
- M. Wormit
- A. Dreuw

Vienna

- J. Nogueira
- S. Mai
- I. González

Vienna/Lubbock/Tianjin

H. Lischka

Frankfurt

I. Burghardt

Loughborough

P. Kimber

Loughborough
University

Engineering and **Physical Sciences** Research Council