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Synchronization of Generally Uncertain Markovian
Inertial Neural Networks with Random Connection
Weight Strengths and Image Encryption Application
Junyi Wang, Member, IEEE, Zewen Ji, Huaguang Zhang, Fellow, IEEE, Zhanshan Wang, Senior Member, IEEE,

Qinggang Meng, Senior Member, IEEE

Abstract—This paper focuses on the synchronization prob-
lem of delayed inertial neural networks (INNs) with generally
uncertain Markovian jumping and their applications in im-
age encryption. The random connection weight strengths and
generally uncertain Markovian are discussed in INNs model.
Compared with most existing INNs models that have constant
connection weight strengths, our model is more practical because
connection weight strengths of INNs may randomly vary owing
to the external and internal environment and human factor.
The delay-range-dependent synchronization conditions (DRDSC)
could be obtained by adopting the delay-product-term Lyapunov-
Krasovskii functional (DPTLKF) and higher order polynomial
based relaxed inequality (HOPRII). In addition, the desired con-
trollers are obtained by solving a set of linear matrix inequalities.
Finally, two examples are shown to demonstrate the effectiveness
of the proposed results.

Index Terms—Inertial neural networks, random connection
weight strengths, delay-product-term Lyapunov-Krasovskii func-
tional, higher order polynomial based relaxed inequality

I. INTRODUCTION

IN recent years, neural networks have received considerable
attention because of their broad applications in pattern

recognition, associative memories, signal processing and se-
cure communication, etc [1]–[8]. Due to the finite switching
speed of the amplifier, time delays often occur between
neurons and may result in complicated chaotic dynamics [3]–
[12].

There are many papers devoting to Markovian jumping
systems (MJSs) because many practical systems experience
random changes in their parameters and structures [13]–[27].
In [28], the stability problem of discrete-time linear systems
with random jumping parameters was investigated, and neces-
sary and sufficient conditions of mean square stability were ob-
tained. The global exponential stability problem was addressed
for delayed recurrent neural networks with Markovian jumping
parameters in [29]. For relaxing the traditional assumption
in MJSs, the stability analysis and stabilization problems of
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discrete-time Markovian linear systems with partially known
transition probabilities were investigated in [30]. After that, the
stability and synchronization of discrete-time neural networks
were investigated based on mixed mode-dependent time delays
and Markovian jumping in [31]. By considering the partially
known transition rates, the stability and synchronization prob-
lems of Markovian jumping neural networks with time-varying
delays were investigated in [20]. Based on [20] and [30],
the finite-time stochastically stability problem of Markovian
jumping memristive neural networks with partly unknown
transition rates was concerned by introducing the Markovian
switching Lyapunov functional. The delay-dependent robust
fault detection problem of MJSs with partly unknown tran-
sition rates was addressed in [32]. Different from partly
unknown transition rates, the passivity problem of Markovian
jumping neural networks with piecewise-constant transition
rates was studied in [33]. By fully considering the property
of transition rates and the characteristic of uncertain domains,
the stability problems of Markovian jumping linear systems
with uncertain transition rates were proposed [34]. Based on
[34] and [35], Markovian nonlinearly coupled neural networks
with generally uncertain transition rates were investigated in
[27], and the corresponding local synchronization conditions
were proposed.

Inertial neural networks (INNs), as a kind of special
neural networks, were described by the second-order differ-
ential equation [36]. In recent years, the INNs have attracted
much attention [37]–[42]. The second-order term is named
inertial term in INNs and could produce more complex
dynamic behavior than normal neural networks with first-
order term. Based on integral inequality method, the finite-
time synchronization conditions of INNs were proposed in
[37]. The fixed-time synchronization of inertial memristor-
based neural networks was investigated, and four different
feedback controllers were designed in [40]. Because of the
chaotic characteristics of INNs, they were utilized in image
encryption/decryption [43] and [44]. The synchronization of
Markovian INNs was investigated in [43], and the obtained
results were applied in image encryption. Based on [43], the
synchronization conditions of delayed INNs with generally
Markovian jumping were proposed in [45]. In [45], the un-
certain and unknown elements in the transition rates matrix
are solved based on Schur complement and matrix inequality
Lemma, which increases the dimension and computational
burden of INNs synchronization conditions. In addition, the
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connection weight strengths of INNs may randomly vary
because of environmental and artificial factors. It is necessary
to further consider the synchronization and image encryption
problems of INNS with random connection weight strengths.

Motivated by the foregoing discussions, this paper ex-
plores the synchronization of generally uncertain Markovian
INNs with random connection weight strengths and their
applications in image encryption. Based on delay-product-term
Lyapunov–Krasovskii functional (DPTLKF) and higher or-
der polynomial-based relaxed inequality (HOPRII) containing
more information of upper and low bounds of time delay and
time delay derivative, the new synchronization conditions and
desired controllers are proposed to ensure drive system and
response system synchronized in mean square. The contribu-
tions of this paper are summarized as follows.

1) Compared with most existing INNs with constant con-
nection weight strengths [37]–[39], the INNs in this
paper is more practical because connection weight
strengths of INNs may randomly vary owing to the
influence of device performances and the uncertainties
of external environment.

2) The DPTLKF is adopted in this paper to deal with the
synchronization of generally uncertain Markovian INNS
with random connection weight strengths, which makes
the synchronization conditions include more information
about time-varying delay and its derivative.

3) Different from the existing generally uncertain Marko-
vian NNs [45]–[47], Schur complement and matrix
inequality Lemma are not adopted in the process of
handling generally uncertain Markovian, and only one
set of relaxation variables are utilized to deal with
generally uncertain transition rates in this paper, which
reduces the dimension and computational complexity
of synchronization conditions. By in-depth exploiting
relationships among the generally uncertain transition
rates, the new synchronization criteria are derived for
the INNs.

The rest of this paper is arranged as follows. In Sec-
tion II, some preliminaries and generally uncertain INNs are
introduced. In Section III, the synchronization criteria and
controllers of INNs are proposed. In Section IV, two examples
are given to demonstrate the validity of the proposed results.
Finally, conclusions are drawn in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Notation

Notation: Throughout the article, Rn and Rn×n denote
n-dimensional Euclidean space and n × n real matrices,
respectively. ∥ · ∥ stands for Euclidean vector norm. AT

denotes the transpose of matrix A. When A > 0, A means
a symmetric positive definite matrix. Sym{A} = A+AT . En

denotes the n-dimensional identity matrix.
(
A B
∗ C

)
stands

for
(

A B
BT C

)
. E denotes the mathematical expectation.

ex = [0n×(x−1)n, En, 0n×(17−x)n] (x = 1, 2, · · · , 17).

B. Problem Formulation

{ıt, t ≥ 0} is a right-continuous Markovian process on
the probability space, which takes values in a finite state space
C = {1, 2, · · · ,M} with generator Ω = (λab), (a, b ∈ C)
given by

Pr{ıt+∆t = b | ıt = a} =

{
λab∆t+ o(∆t), a ̸= b,

1 + λaa∆t+ o(∆t), a = b,

where ∆t > 0 and lim
∆t→0

(o(∆t)/∆t) = 0. λab ≥ 0 (a ̸= b) is
the transition rate from mode a at time t to mode b at time

t+∆t, and λaa = −
M∑

b=1,b̸=a

λab.

In this paper, transition rates of the jumping process are
generally uncertain. For instance, transition rate matrix (TRM)
Ω with M operation modes may be expressed as

Ω =


λ̃11+ △11 ? λ̃13+ △13 · · · λ̃1M+ △1M

? ? λ̃23+ △23 · · · ?
...

...
...

. . .
...

λ̃M1+ △M1 ? ? · · · λ̃MM+ △MM

 ,

(1)

where “?” denotes the completely unknown transition rate.
λ̃ab and △ab denote the estimate value and estimate error of
the uncertain transition rate λab, respectively. ∥ △ab ∥ ≤ ϖab

and ϖab ≥ 0. λ̃ab, ϖab are known. For the clarity of
the notation, ∀ a ∈ C, we denote Ca = Ca

k

∪
Ca
uk, where

Ca
k = {b : The estimate value of λab is known for b ∈ C} and

Ca
uk = {b : The estimate value of λab is unknown for b ∈ C}.

On the basis of the characteristics of the transition rates, the
following cases are assumed.
If Ca

k ̸= C, and a /∈ Ca
k , then λ̃ab −ϖab ≥ 0, (∀b ∈ Ca

k ).
If Ca

k ̸= C, and a ∈ Ca
k , then λ̃ab−ϖab ≥ 0, (∀b ∈ Ca

k , b ̸= a),
λ̃aa +ϖaa ≤ 0, and

∑
b∈Ca

k

λ̃ab ≤ 0.

If Ca
k = C, then λ̃ab − ϖab ≥ 0, (∀b ∈ C, b ̸= a), λ̃aa =

−
M∑

b=1,b̸=a

λ̃ab ≤ 0, and ϖaa =
M∑

b=1,b̸=a

ϖab ≥ 0.

Remark 1: Different from most existing TRM, the gen-
erally uncertain TRM (1) is considered for INNs in this
paper, which is more general and applicable. When △ab= 0,
generally uncertain TRM (1) is reduced to partially unknown
TRM. When Ca

k = C (∀b ∈ C), generally uncertain TRM (1)
is reduced to bounded uncertain TRM.

Consider the INNs as follows

d2uk(t)

dt2
= −ak(ıt)

duk(t)

dt
− bk(ıt)uk(t) + α(t)

n∑
l=1

w1
kl(ıt)

fl(ul(t)) + β(t)

n∑
l=1

w2
kl(ıt)fl(ul(t− τ(t))) + Tk (2)

where k = 1, 2, · · · , n, uk(t) denotes the state of the kth
neuron at time t. ak(ıt) > 0, bk(ıt) > 0 are constants. w1

kl(ıt)
and w2

kl(ıt) are connection weights related to the neurons. fl(.)
is the activation function of lth neurons with fl(0) = 0. Tk is
the external input of the kth neuron at time t. The time-varying
delay τ(t) satisfies 0 ≤ τ(t) ≤ τ , µ1 ≤ τ̇(t) ≤ µ2, where
τ , µ1 and µ2 are constants. α(t), β(t) denote the random
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connection weight strengths. The initial condition associated
with (2) is given as follows: uk(s) = ϕk(s),

duk(s)
ds = ϕ̃k(s),

s ∈ ([−τ, 0]) and ϕk(t), ϕ̃k(t) ∈ C([−τ, 0],R). The math-
ematical expectations and variances of α(t) and β(t) are
E{α(t)} = ᾱ, E{(α(t) − ᾱ)2} = να, E{β(t)} = β̄ and
E{(β(t)− β̄)2} = νβ .

Remark 2: Different from most existing INNs [37], [42]–
[45] with constant connection weight strengths, the random
connection weight strengths are considered for INNS in this
paper, which is more practical because connection weight
strengths of INNs may randomly vary owing to environmental
and artificial interferences.

Assumption 1 [48] For any u1, u2 ∈ R, there are
constants l−k , l

+
k , such that

l−k ≤ fk(u1)− fk(u2)

u1 − u2
≤ l+k , k = 1, 2, · · · , n.

We denote

L1 = diag{l+1 l
−
1 , · · · , l+n l−n }, L2 = diag{ l

+
1 + l−1

2
, · · · , l

+
n + l−n

2
}.

For constant fk, the following transformation is em-
ployed

♭k(t) =
duk(t)

dt
+ fkuk(t), k = 1, 2, · · · , n. (3)

Then, system (2) is rewritten as the following form

duk(t)

dt
=− fkuk(t) + ♭k(t)

d♭k(t)

dt
=− [bk(ıt) + fk(fk − ak(ıt))]uk(t)− (ak(ıt)− fk)

× ♭k(t) + α(t)
n∑

l=1

w1
kl(ıt)fl(ul(t))

+ β(t)
n∑

l=1

w2
kl(ıt)fl(ul(t− τ(t))) + Tk

=− ãk(ıt)uk(t)− b̃k(ıt)♭k(t) + α(t)
n∑

l=1

w1
kl(ıt)

× fl(ul(t)) + β(t)
n∑

l=1

w2
kl(ıt)fl(ul(t− τ(t))) + Tk,

(4)

where ãk(ıt) = bk(ıt) + fk(fk − ak(ıt)), b̃k(ıt) = ak(ıt) −
fk. The initial condition associated with (4) is considered as
follows uk(s) = ϕk(s),

duk(s)
ds = ϕ̃k(s), ♭k(s) = ϕ̃k(s) +

fkϕk(s), and s ∈ ([−τ, 0]).
Now, system (4) is rewritten as the following form

du(t)

dt
=−Au(t) + ♭(t),

d♭(t)

dt
=−B(ıt)♭(t)− C(ıt)u(t) + α(t)W 1(ıt)f(u(t))

+ β(t)W 2(ıt)f(u(t− τ(t))) + T, (5)

where u(t) = [u1(t), u2(t), . . . , un(t)]
T , ♭(t) =

[♭1(t), ♭2(t), . . . , ♭n(t)]
T , A = diag{f1, · · · ,fn},

B(ıt) = diag{a1(ıt) − f1, · · · , an(ıt) − fn}, C(ıt) =
diag{b1(ıt)+f1(f1−a1(ıt)), · · · , bn(ıt)+fn(fn−an(ıt))},

W 1(ıt) = (w1
kl(ıt))n×n, W 2(ıt) = (w2

kl(ıt))n×n,
T = [T1, · · · , Tn].

To be more convenient, each possible value of ıt is
denoted by a (a ∈ C). According to (5), one gets

du(t)

dt
=−Au(t) + ♭(t),

d♭(t)

dt
=−Ba♭(t)− Cau(t) + α(t)W 1

a f(u(t))

+ β(t)W 2
a f(u(t− τ(t))) + T (6)

For the drive system (6), the response system is consid-
ered as

dû(t)

dt
=−Aû(t) + ♭̂(t) + v1(t),

d♭̂(t)

dt
=−Ba♭̂(t)− Caû(t) + α(t)W 1

a f̂(û(t))

+ β(t)W 2
a f̂(û(t− τ(t))) + T + v2(t), (7)

where û(t) = [û1(t), û2(t), . . . , ûn(t)]
T , ♭̂(t) =

[̂♭1(t), ♭̂2(t), . . . , ♭̂n(t)]
T are state responses of controlled

system. v1(t) ∈ Rn, v2(t) ∈ Rn are control inputs. The
errors are e1(t) = û(t) − u(t), e2(t) = ♭̂(t) − ♭(t), and
g(e1(t)) = f̂(û(t)) − f(u(t)). Then, the error dynamic
system is given as follows

de1(t)

dt
=−Ae1(t) + e2(t) + v1(t),

de2(t)

dt
=−Bae2(t)− Cae1(t) + α(t)W 1

a g(e1(t))

+ β(t)W 2
a g(e1(t− τ(t))) + v2(t). (8)

The control inputs of the error dynamic system (8) are given
as follows

v1(t) = L1ae1(t),

v2(t) = L2ae2(t). (9)

Then, system (8) is rewritten as the following form

de1(t)

dt
=− (A− L1a)e1(t) + e2(t),

de2(t)

dt
=− (Ba − L2a)e2(t)− Cae1(t) + α(t)W 1

a g(e1(t))

+ β(t)W 2
a g(e1(t− τ(t))). (10)

Lemma 1: ( [49]). For the real scalar α ∈ (0, 1), vectors
ω1, ω2, given symmetric matrices W1 > 0, W2 > 0, if a

matrix X ∈ Rn×n satisfies
[
W1 X
∗ W2

]
≥ 0, then the

following inequality holds
1

α
ωT
1 W1ω1 +

1

1− α
ωT
2 W2ω2

≥
[
ω1

ω2

]T [
W1 X
∗ W2

] [
ω1

ω2

]
. (11)

Lemma 2: (HOPRII, [50]). x(t) is a differentiable func-
tion in [a1, a2] → Rn for a time-varying scalar a(t) ∈ [a1, a2].
For symmetric matrices Zl = ZT

l > 0, (l = 1, 2), and any
matrices N1, N2, the following inequality holds

a12

∫ a(t)

a1

ẋT (s)Z1ẋ(s)ds+ a12

∫ a2

a(t)

ẋT (s)Z2ẋ(s)ds ≥
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ςT (t)

[
ω1

ω2

]T
∆

[
ω1

ω2

]
ς(t), (12)

where

∆ =

[
Z̃1 + (1− γ)f̃1 (1− γ)N1 + γN2

∗ Z̃2 + γf̃2

]
,

γ =
a(t)− a1
a12

, a12 = a2 − a1,

ς(t) = [xT (a2), x
T (a(t)), xT (a1), ς

T
1 (t), ς

T
2 (t), ς

T
3 (t),

ςT4 (t), ς
T
5 (t), ς

T
6 (t)]

T ,

ς1(t) =
1

a(t)− a1

∫ a(t)

a1

x(s)ds,

ς2(t) =
1

a2 − a(t)

∫ a2

a(t)

x(s)ds,

ς3(t) =
2

(a(t)− a1)2

∫ a(t)

a1

∫ a(t)

u

x(s)dsdu,

ς4(t) =
2

(a2 − a(t))2

∫ a2

a(t)

∫ a2

u

x(s)dsdu,

ς5(t) =
6

(a(t)− a1)3

∫ a(t)

a1

∫ a(t)

u

∫ a(t)

v

x(s)dsdvdu,

ς6(t) =
6

(a2 − a(t))3

∫ a2

a(t)

∫ a2

u

∫ a2

v

x(s)dsdvdu,

Z̃1 = diag{Z1, 3Z1, 5Z1, 7Z1}, Z̃2 = diag{Z2, 3Z2, 5Z2, 7Z2},

f̃1 = Z̃1 −N2Z̃
−1
2 NT

2 , f̃2 = Z̃2 −NT
1 Z̃

−1
1 N1,

ω1 = [(ẽ2 − ẽ3)
T , (ẽ2 + ẽ3 − 2ẽ4)

T , (ẽ2 − ẽ3 + 6ẽ4 − 6ẽ6)
T ,

(ẽ2 + ẽ3 − 12ẽ4 + 30ẽ6 − 20ẽ8)
T ]T ,

ω2 = [(ẽ1 − ẽ2)
T , (ẽ1 + ẽ2 − 2ẽ5)

T , (ẽ1 − ẽ2 + 6ẽ5 − 6ẽ7)
T ,

(ẽ1 + ẽ2 − 12ẽ5 + 30ẽ7 − 20ẽ9)
T ]T ,

ẽk = [0n×(k−1)n In×n 0n×(9−k)n], (k = 1, 2, · · · , 9).

Remark 3: According to [50], the matrix ∆ in (12) could
provide extra freedom to increase the accuracy of estimating
the integral terms.

Lemma 3: ( [51]). For the matrix S > 0, the following
inequality holds∫ l2

l1

vT (s)Sv(s)ds ≥ 1

l2 − l1
(

∫ l2

l1

v(s)ds)TS(

∫ l2

l1

v(s)ds)

+
3

l2 − l1
ΞT
1 SΞ1 +

5

l2 − l1
ΞT
2 SΞ2, (13)

where

Ξ1 =

∫ l2

l1

v(s)ds− 2

l2 − l1

∫ l2

l1

∫ l2

u

v(s)dsdu,

Ξ2 =

∫ l2

l1

v(s)ds− 6

l2 − l1

∫ l2

l1

∫ l2

u

v(s)dsdu

+
12

(l2 − l1)2

∫ l2

l1

∫ l2

u

∫ l2

v

v(s)dsdvdu

.

III. MAIN RESULTS

In this section, the synchronization conditions of general-
ly uncertain Markovian INNs are obtained based on DPTLKF
and HOPRII.

Theorem 1. Under Assumption 1, the drive system (6)
and response system (7) are synchronous if there are any ma-
trices X1 ∈ R2n×2n, X2 ∈ R6n×6n, Yl ∈ R4n×4n (l = 1, 2),
invertible matrices F̂l, Fl ∈ Rn×n (l = 1, 2), symmetric ma-
trices P1 ∈ R4n×4n, Pv ∈ R2n×2n, Pv > 0 (v = 2, 3), Qkp,
Qkq ∈ R2n×2n (k = 3, 4), Zl (l = 1, 2), symmetric positive
definite matrices Ha, Ka, Vlab (l = 1, 2), R, M1 ∈ R2n×2n,
M2 ∈ Rn×n and Ql ∈ R2n×2n (l = 1, 2), positive definite
diagonal matrices R1, R2, R3, such that for any a ∈ C, the
succeeding matrix inequalities are satisfied.

If a /∈ Ca
k ,

Hb −Ha − V1ab ≤ 0, ∀b ∈ Ca
k , (14)

Kb −Ka − V2ab ≤ 0, ∀b ∈ Ca
k , (15)

Hb −Ha ≤ 0, ∀b ∈ Ca
uk, b ̸= a, (16)

Kb −Ka ≤ 0, ∀b ∈ Ca
uk, b ̸= a, (17)[

Ξ(µ1, 0) ΣT
1 Y2

∗ −M̂2

]
<0, (18)[

Ξ(µ1, τ) ΣT
2 Y

T
1

∗ −M̂2

]
<0, (19)

[
Ξ(µ2, 0) ΣT

1 Y2
∗ −M̂2

]
<0, (20)[

Ξ(µ2, τ) ΣT
2 Y

T
1

∗ −M̂2

]
<0, (21)

[
P2 X1

∗ P3

]
≥ 0,

[
Q̂3q X2

∗ Q̂4q

]
≥ 0, (22)

ϑ0 > 0, ϑ1 > 0, Qk,l > 0, zσ,l > 0, (k = 3, 4, σ, l = 1, 2),
(23)

where
Ξ(µ1, 0) = Γ(τ̇(t), τ(t))|τ̇(t)=µ1,τ(t)=0 + Γt + Γaa,
Ξ(µ2, 0) = Γ(τ̇(t), τ(t))|τ̇(t)=µ2,τ(t)=0 + Γt + Γaa,
Ξ(µ1, τ) = Γ(τ̇(t), τ(t))|τ̇(t)=µ1,τ(t)=τ + Γt + Γaa,
Ξ(µ2, τ) = Γ(τ̇(t), τ(t))|τ̇(t)=µ2,τ(t)=τ + Γt + Γaa,
Γ(τ̇(t), τ(t)) = τ̇(t)ϕT2Q1ϕ2 + Sym{[τ(t)eT7 + (τ −
τ(t))eT8 ]R(e1 − e3)} + τ̇(t)[ΠT

3 P2Π3 − ΠT
4 P3Π4] +

Sym{ΠT
1 P1Π2(t)} + Sym{ΠT

3 P2Π5} + Sym{ΠT
4 P3Π6} +

ΠT
11(Q3p − τ(t)Q3q)Π11 − (1 − τ̇(t))ΠT

12(Q3p −
τ(t)Q3q)Π12 + (1 − τ̇(t))ΠT

12(Q4p + (τ − τ(t))Q4q)Π12 −
ΠT

13(Q4p + (τ − τ(t))Q4q)Π13 − Sym{ΠT
7 Q̂3qΠ8 +

ΠT
9 Q̂4qΠ10} − ϱτΠT

8 Q̂3qΠ8 − (1 − ϱ)τΠT
10Q̂4qΠ10 −

1
τ

[
Π7

Π9

]T [
Q̂3q X2

∗ Q̂4q

] [
Π7

Π9

]
−

[
Σ1

Σ2

]T
ψ̂2(ϱ, 1 −

ϱ)

[
Σ1

Σ2

]
,

Γt = Sym{eT1Hae14 + eT13Kae15}+ ϕT1Q1ϕ1 + eT1 Z1e1
− eT2 Z1e2 + eT2 Z2e2 − eT3 Z2e3 + τ2eT14M2e14 − ϕT2Q1ϕ2
+ ϕT1Q2ϕ1 − ϕT3Q2ϕ3 + Sym{eT1 F1e13 − eT1 F1(A− L1a)e1
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− eT1 F1e14 − eT14F2(A− L1a)e1 + eT14F2e13 − eT14F2e14
− eT13F̂1(Ba − L2a)e13 + eT13F̂1ᾱW

1
a e4 + eT13F̂1β̄W

2
a e5

−eT13F̂1e15−eT13F̂1Cae1−eT15F̂2(Ba−L2a)e13+e
T
15F̂2ᾱW

1
a e4

+ eT15F̂2β̄W
2
a e5 − eT15F̂2e15 − eT15F̂2Cae1}+ τΠT

11M1Π11

+ ϕT1 Γ1ϕ1 + ϕT2 Γ2ϕ2 + ϕT3 Γ3ϕ3,
Γaa = eT1

∑
b∈Ca

k

[λab (Hb −Ha) + 2ϖabV1ab] e1

+ e13
∑

b∈Ca
k

[λab (Kb −Ka) + 2ϖabV2ab] e13,

ϑϱ = P1 + τΦT
1 (ϱP2 + (1 − ϱ)P3)Φ1 + Sym{ΦT

1 P2Φ2 +

ΦT
1 P3Φ3}+ 1

τ

[
Φ2

Φ3

]T [
P2 X1

∗ P3

] [
Φ2

Φ3

]
,

ϑ0 = ϑϱ|τ(t)=0, ϑ1 = ϑϱ|τ(t)=τ , ϱ = τ(t)
τ ,

Φ1 = [êT1 0]T , Φ2 = [0 êT3 ]
T , Φ3 = [0 êT4 ]

T ,
êm = [0n×(m−1)n In×n 0n×(4−m)n], m = 1, 2, 3, 4.
ϕ1 = [eT1 , e

T
4 ], ϕ2 = [eT2 , e

T
5 ], ϕ3 = [eT3 , e

T
6 ],

ψ̂2(ϱ, 1− ϱ) =

[
(2− ϱ)M̂2 (1− ϱ)Y1 + ϱY2

∗ (1 + ϱ)M̂2

]
,

M̂2 = diag{M2, 3M2, 5M2, 7M2},
Λ̂a = ϖaa −

∑
b∈Ca

k ,b̸=a

ϖab,

λa = −λ̄aa −
∑

b∈Ca
k ,b̸=a

λab,

λab = λ̃ab −ϖab, λ̄ab = λ̃ab +ϖab,
Π1 = [eT1 , e

T
2 , τ(t)e

T
7 , (τ − τ(t))eT8 ]

T ,
Π2(t) = [eT14, (1− τ̇(t))eT16, eT1 − (1− τ̇(t))eT2 , (1− τ̇(t))eT2 −
eT3 ]

T ,
Π3 = [eT1 , e

T
7 ]

T , Π4 = [eT1 , e
T
8 ]

T ,
Π5 = [ϱτeT14, e

T
1 − (1− τ̇(t))eT2 − τ̇(t)eT7 ]

T ,
Π6 = [(1− ϱ)τeT14, (1− τ̇(t))eT2 − eT3 + τ̇(t)eT8 ]

T ,
Π7 = [0, eT1 −eT2 , 0,−eT1 −eT2 +2eT7 , 0, e

T
1 −eT2 +6eT7 −6eT9 ]

T ,
Π8 = [eT7 , 0, e

T
7 − eT9 , 0, e

T
7 − 3eT9 + 2eT11, 0]

T ,
Π9 = [0, eT2 −eT3 , 0,−eT2 −eT3 +2eT8 , 0, e

T
2 −eT3 +6eT8 −6eT10]

T ,
Π10 = [eT8 , 0, e

T
8 − eT10, 0, e

T
8 − 3eT10 + 2eT12, 0]

T ,
Π11 = [eT1 , e

T
14]

T , Π12 = [eT2 , e
T
16]

T , Π13 = [eT3 , e
T
17]

T ,
Σ1 = [(e1 − e2)

T , (e1 + e2 − 2e7)
T , (e1 − e2 + 6e7 −

6e9)
T , (e1 + e2 − 12e7 + 30e9 − 20e11)

T ]T ,
Σ2 = [(e2 − e3)

T , (e2 + e3 − 2e8)
T , (e2 − e3 + 6e8 −

6e10)
T , (e2 + e3 − 12e8 + 30e10 − 20e12)

T ]T ,
Q31 = Q3p, Q41 = Q4p, Q32 = Q3p − τQ3q,
Q42 = Q4p + τQ4q ,
z1,1 = z1|τ̇(t)=µ1

, z1,2 = z1|τ̇(t)=µ2
,

z2,1 = z2|τ̇(t)=µ1
, z2,2 = z2|τ̇(t)=µ2

,

z1 =M1 + τ̇(t)Q3q +

[
0 Z1

Z1 0

]
,

z2 =M1 + τ̇(t)Q4q +

[
0 Z2

Z2 0

]
,

Q̂3q = diag{z1, 3z1, 5z1},
Q̂4q = diag{z2, 3z2, 5z2},

Γα1 =

[
−Rα1E1 Rα1E2

∗ −Rα1

]
(α1 = 1, 2, 3).

If a ∈ Ca
k ,

Hb −Ha − V1ab ≤ 0, ∀b ∈ C, b ̸= a, (24)
Kb −Ka − V2ab ≤ 0, ∀b ∈ C, b ̸= a, (25)

[
Ξ̂(µ1, 0) ΣT

1 Y2
∗ −M̂2

]
<0, (26)[

Ξ̂(µ1, τ) ΣT
2 Y

T
1

∗ −M̂2

]
<0, (27)

[
Ξ̂(µ2, 0) ΣT

1 Y2
∗ −M̂2

]
<0, (28)[

Ξ̂(µ2, τ) ΣT
2 Y

T
1

∗ −M̂2

]
<0, (29)

[
P2 X1

∗ P3

]
≥ 0,

[
Q̂3q X2

∗ Q̂4q

]
≥ 0 (30)

ϑ0 > 0, ϑ1 > 0, Qk,l > 0, zσ,l > 0, (k = 3, 4, σ, l = 1, 2),
(31)

where
Ξ̂(µ1, 0) = Γ(τ̇(t), τ(t))|τ̇(t)=µ1,τ(t)=0 + Γt + Γ̂aa,
Ξ̂(µ2, 0) = Γ(τ̇(t), τ(t))|τ̇(t)=µ2,τ(t)=0 + Γt + Γ̂aa,
Ξ̂(µ1, τ) = Γ(τ̇(t), τ(t))|τ̇(t)=µ1,τ(t)=τ + Γt + Γ̂aa,
Ξ̂(µ2, τ) = Γ(τ̇(t), τ(t))|τ̇(t)=µ2,τ(t)=τ + Γt + Γ̂aa,
In matrices Ξ̂(µ1, 0), Ξ̂(µ2, 0), Ξ̂(µ1, τ) and Ξ̂(µ2, τ), only
the element Γ̂aa is different from Γaa. The other elements are
the same as the elements in Ξ(µ1, 0), Ξ(µ2, 0), Ξ(µ1, τ) and
Ξ(µ2, τ).

Γ̂aa = eT1 [
M∑

b∈Ca
k ,b̸=a

[λab (Hb −Ha) + 2ϖabV1ab]

+ λa (Hl −Ha) + 2Λ̂aV1al]e1

+ eT13[
M∑

b∈Ca
k ,b̸=a

[λab (Kb −Ka) + 2ϖabV2ab]

+ λa (Kl −Ka) + 2Λ̂aV2al]e13, (l ∈ Ca
uk).

Proof Consider the DPTLKF of generally uncertain
Markovian error INNs as follows

V (t, a) =
7∑

r=1
Vr(t, a),

V1(t, a) =e
T
1 (t)Hae1(t) + eT2 (t)Kae2(t), (32)

V2(t, a) =

∫ t

t−τ(t)

ϕT (s)Q1ϕ(s)ds+

∫ t

t−τ

ϕT (s)Q2ϕ(s)ds,

(33)

V3(t, a) =

∫ t

t−τ

eT1 (s)dsR

∫ t

t−τ

e1(s)ds, (34)

V4(t, a) =ζ
T
1 (t)P1ζ1(t) + τ(t)ζT2 (t)P2ζ2(t) (35)

+ (τ − τ(t))ζT3 (t)P3ζ3(t),

V5(t, a) =

∫ t

t−τ(t)

ζT4 (s)Q3(τ(t))ζ4(s)ds (36)

+

∫ t−τ(t)

t−τ

ζT4 (s)Q4(τ(t))ζ4(s)ds,

V6(t, a) =

∫ 0

−τ

∫ t

t+θ

ζT4 (s)M1ζ4(s)dsdθ, (37)

V7(t, a) =τ

∫ 0

−τ

∫ t

t+θ

ėT1 (s)M2ė1(s)dsdθ, (38)
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where
ϕ(t) = [eT1 (t), g

T (e1(t))]
T ,

ζ1(t) = [eT1 (t), e
T
1 (t− τ(t)),

∫ t

t−τ(t)
eT1 (s)ds,∫ t−τ(t)

t−τ
eT1 (s)ds]

T ,
ζ2(t) = [eT1 (t),

1
τ(t)

∫ t

t−τ(t)
eT1 (s)ds]

T ,

ζ3(t) = [eT1 (t),
1

τ−τ(t)

∫ t−τ(t)

t−τ
eT1 (s)ds]

T ,
ζ4(t) = [eT1 (t), ė

T
1 (t)]

T ,
Q3(τ(t)) = Q3p−τ(t)Q3q , Q4(τ(t)) = Q4p+(τ−τ(t))Q4q.

In order to prove the positive definiteness of the LKF
V (t, a), V4(t, a) is rewritten as

V4(t, a) =ζ
T
1 (t){P1 + τ(t)(Φ1 +

1

τ(t)
Φ2)

TP2(Φ1 +
1

τ(t)
Φ2)

+ (τ − τ(t))(Φ1 +
1

τ − τ(t)
Φ3)

TP3(Φ1

+
1

τ − τ(t)
Φ3)}ζ1(t)

=ζT1 (t)[P1 + τΦT
1 (ϱP2 + (1− ϱ)P3)Φ1

+ Sym{ΦT
1 P2Φ2 +ΦT

1 P3Φ3}

+
1

τ
(
1

ϱ
ΦT

2 P2Φ2 +
1

1− ϱ
ΦT

3 P3Φ3)]ζ1(t), (39)

where
Φ1 = [êT1 0]T , Φ2 = [0 êT3 ]

T , Φ3 = [0 êT4 ]
T , êm =

[0n×(m−1)n In×n 0n×(4−m)n], m = 1, 2, 3, 4.
P2 > 0 and P3 > 0, then by utilizing Lemma 1, for any

matrix X1 and
[
P2 X1

∗ P3

]
≥ 0, one has

1

ϱ
ΦT

2 P2Φ2 +
1

1− ϱ
ΦT

3 P3Φ3 ≥
[

Φ2

Φ3

]T [
P2 X1

∗ P3

] [
Φ2

Φ3

]
.

(40)

Thus we have

V4(t, a) ≥ ζT1 (t)ϑϱζ1(t), (41)

where

ϑϱ = P1 + τΦT
1 (ϱP2 + (1− ϱ)P3)Φ1 + Sym{ΦT

1 P2Φ2

+ΦT
1 P3Φ3}+

1

τ

[
Φ2

Φ3

]T [
P2 X1

∗ P3

] [
Φ2

Φ3

]
. (42)

From ϑ0 > 0 and ϑ1 > 0 in (23), we get V4(t, a) > 0. From
Qk,l > 0 (k = 3, 4, l = 1, 2), we get V5(t, a) > 0. L is defined
as the weak infinitesimal operator. Then, calculating the time
derivative of V (t, a), one has

LV1(t, a)
= 2eT1 (t)Haė1(t) + 2eT2 (t)Kaė2(t)

+
M∑
b=1

λabe
T
1 (t)Hbe1(t) +

M∑
b=1

λabe
T
2 (t)Kbe2(t), (43)

LV2(t, a)
= ϕT (t)Q1ϕ(t)− (1− τ̇(t))ϕT (t− τ(t))Q1

ϕ(t− τ(t)) + ϕT (t)Q2ϕ(t)− ϕT (t− τ)Q2ϕ(t− τ), (44)
LV3(t, a)

= 2[τ(t)× 1

τ(t)

∫ t

t−τ(t)

eT1 (s)ds+ (τ − τ(t))

× 1

τ − τ(t)

∫ t−τ(t)

t−τ

eT1 (s)ds]R(e1(t)− e1(t− τ)), (45)

LV4(t, a)
= 2ζT1 (t)P1ζ̇1(t) + τ̇(t)ζT2 (t)P2ζ2(t) + 2τ(t)ζT2 (t)P2

× ζ̇2(t)− τ̇(t)ζT3 (t)P3ζ3(t) + 2(τ − τ(t))ζT3 (t)P3ζ̇3(t),
(46)

LV5(t, a)
= ζT4 (t)(Q3p − τ(t)Q3q)ζ4(t)− (1− τ̇(t))ζT4 (t− τ(t))(Q3p

− τ(t)Q3q)ζ4(t− τ(t)) + (1− τ̇(t))ζT4 (t− τ(t))(Q4p

+ (τ − τ(t))Q4q)ζ4(t− τ(t))− ζT4 (t− τ)(Q4p + (τ

− τ(t))Q4q)ζ4(t− τ)− τ̇(t)

∫ t

t−τ(t)

ζT4 (s)Q3qζ4(s)ds

− τ̇(t)

∫ t−τ(t)

t−τ

ζT4 (s)Q4qζ4(s)ds, (47)

LV6(t, a)

= τζT4 (t)M1ζ4(t)−
∫ t

t−τ

ζT4 (s)M1ζ4(s)ds, (48)

LV7(t, a)

= τ2ėT1 (t)M2ė1(t)− τ

∫ t

t−τ

ėT1 (s)M2ė1(s)ds, (49)

where
ζ̇1(t) = [ėT1 (t), (1− τ̇(t))ėT1 (t−τ(t)), eT1 (t)− (1− τ̇(t))eT1 (t
− τ(t)), (1− τ̇(t))eT1 (t− τ(t))− eT1 (t− τ)]T ,

ζ̇2(t) = [ėT1 (t),
1

τ(t)e
T
1 (t)−

(1−τ̇(t))
τ(t) eT1 (t− τ(t))

− τ̇(t)
τ2(t)

∫ t

t−τ(t)
eT1 (s)ds]

T ,

ζ̇3(t) = [ėT1 (t),
(1−τ̇(t))
τ−τ(t) e

T
1 (t− τ(t))− 1

τ−τ(t)e
T
1 (t− τ)

+ τ̇(t)
(τ−τ(t))2

∫ t−τ(t)

t−τ
eT1 (s)ds]

T .

By using Lemma 2, one gets

− τ

∫ t

t−τ

ėT1 (s)M2ė1(s)ds

= −τ
∫ t

t−τ(t)

ėT1 (s)M2ė1(s)ds− τ

∫ t−τ(t)

t−τ

ėT1 (s)M2ė1(s)ds

≤ −χT (t)

{[
Σ1

Σ2

]T
ψ̂1(ϱ, 1− ϱ)

[
Σ1

Σ2

]}
χ(t)

≤ −χT (t)

{[
Σ1

Σ2

]T
ψ̂2(ϱ, 1− ϱ)

[
Σ1

Σ2

]}
χ(t)

+ χT (t)[ϱΣT
2 Y

T
1 M̂

−1
2 Y1Σ2

+ (1− ϱ)ΣT
1 Y2M̂

−1
2 Y T

2 Σ1]χ(t), (50)

where

ψ̂1(ϱ, 1− ϱ) =

[
M̂2 + (1− ϱ)Π̂1 (1− ϱ)Y1 + ϱY2

∗ M̂2 + ϱΠ̂2

]
,

Π̂1 = M̂2 − Y2M̂
−1
2 Y T

2 , Π̂2 = M̂2 − Y T
1 M̂

−1
2 Y1,

M̂2, ψ̂2(ϱ, 1− ϱ), ϱ, Σ1, Σ2 are given in Theorem 1.
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By using the integration formula, the zero equalities with
any symmetric matrices Zl (l = 1, 2) hold

0 = eT1 (t)Z1e1(t)− eT1 (t− τ(t))Z1e1(t− τ(t))

− 2

∫ t

t−τ(t)

eT1 (s)Z1ė1(s)ds, (51)

0 = eT1 (t− τ(t))Z2e1(t− τ(t))− eT1 (t− τ)Z2e1(t− τ)

− 2

∫ t−τ(t)

t−τ

eT1 (s)Z2ė1(s)ds. (52)

From (48), one gets

−
∫ t

t−τ

ζT4 (s)M1ζ4(s)ds

= −
∫ t−τ(t)

t−τ

ζT4 (s)M1ζ4(s)ds−
∫ t

t−τ(t)

ζT4 (s)M1ζ4(s)ds.

(53)

Considering single integral terms in (47), (48) and (53),
we get

∆1

= −
∫ t

t−τ(t)

ζT4 (s)(M1 + τ̇(t)Q3q +

[
0 Z1

Z1 0

]
)ζ4(s)ds,

(54)

∆2

= −
∫ t−τ(t)

t−τ

ζT4 (s)(M1 + τ̇(t)Q4q +

[
0 Z2

Z2 0

]
)ζ4(s)ds.

(55)

By using Lemma 3, the upper bounds of (54) and (55)
are obtained as follows

∆1 +∆2

≤ −χT (t){ 1

τ(t)
(Π7 + τ(t)Π8)

T Q̂3q(Π7 + τ(t)Π8)

+
1

τ − τ(t)
(Π9 + (τ − τ(t))Π10)

T Q̂4q(Π9

+ (τ − τ(t))Π10)}χ(t)
= −χT (t){Sym{ΠT

7 Q̂3qΠ8 +ΠT
9 Q̂4qΠ10}+ ϱτΠT

8 Q̂3qΠ8

+ (1− ϱ)τΠT
10Q̂4qΠ10 +

1

τ
(
1

ϱ
ΠT

7 Q̂3qΠ7

+
1

1− ϱ
ΠT

9 Q̂4qΠ9)}χ(t) (56)

By using Lemma 1 and (56), the following inequality is
obtained

∆1 +∆2

≤ −χT (t){Sym{ΠT
7 Q̂3qΠ8 +ΠT

9 Q̂4qΠ10}+ ϱτΠT
8 Q̂3qΠ8

+ (1− ϱ)τΠT
10Q̂4qΠ10 +

1

τ

[
Π7

Π9

]T [
Q̂3q X2

∗ Q̂4q

]
×
[

Π7

Π9

]
}χ(t). (57)

From Assumption 1, one gets

ϕT (t)

[
−R1E1 R1E2

∗ −R1

]
ϕ(t) ≥ 0, (58)

ϕT (t− τ(t))

[
−R2E1 R2E2

∗ −R2

]
ϕ(t− τ(t)) ≥ 0, (59)

ϕT (t− τ)

[
−R3E1 R3E2

∗ −R3

]
ϕ(t− τ) ≥ 0. (60)

From (10), one gets

0 = 2E{[eT1 (t)F1 + ėT1 (t)F2][−(A− L1a)e1(t) + e2(t)

− ėT1 (t)]}, (61)

0 = 2E{[eT2 (t)F̂1 + ėT2 (t)F̂2][−(Ba − L2a)e2(t)− Cae1(t)

+ α(t)W 1
a g(e1(t)) + β(t)W 2

a g(e1(t− τ(t)))− ėT2 (t)]}.
(62)

Then combining (32)-(62), we get E{LV (t, a)} ≤
E{χT (t)℘(t)χ(t)} < 0,
where

℘(s) = ψ̄(τ̇(t), τ(t)) + ϱΣT
2 Y

T
1 M̂

−1
2 Y1Σ2

+ (1− ϱ)ΣT
1 Y2M̂

−1
2 Y T

2 Σ1, (63)

ψ̄(τ̇(t), τ(t))

= Γt + Γ(τ̇(t), τ(t)) + eT1
M∑
b=1

λabHbe1 + eT13
M∑
b=1

λabKbe13,

χ(t) = [eT1 (t), e
T
1 (t− τ(t)), eT1 (t− τ), gT (e1(t)),

gT (e1(t− τ(t))), gT (e1(t− τ)), 1
τ(t)

∫ t

t−τ(t)
eT1 (s)ds,

1
τ−τ(t)

∫ t−τ(t)

t−τ
eT1 (s)ds,

2
(τ(t))2

∫ t

t−τ(t)

∫ t

θ
eT1 (s)dsdθ,

2
(τ−τ(t))2

∫ t−τ(t)

t−τ

∫ t−τ(t)

θ
eT1 (s)dsdθ,

6
(τ(t))3

∫ t

t−τ(t)

∫ t

θ

∫ t

α
eT1 (s)dsdαdθ,

6
(τ−τ(t))3

∫ t−τ(t)

t−τ

∫ t−τ(t)

θ

∫ t−τ(t)

α
eT1 (s)dsdαdθ,

eT2 (t), ė
T
1 (t), ė

T
2 (t), ė

T
1 (t− τ(t)), ėT1 (t− τ)]T .

According to the convex theory, E{χT (t)℘(t)χ(t)} < 0
could be satisfied for all (τ̇(t), τ(t)) ∈ [µ1, µ2]× [0, τ ] if it is
satisfied at the vertices of the interval [µ1, µ2]× [0, τ ].

According to Schur complement, if one gets E{ψ̄γ} <
0 (γ = 1, 2, 3, 4), then one gets E{χT (t)℘(t)χ(t)} < 0,
where,

ψ̄1 =

[
ψ̄(µ1, 0) ΣT

1 Y2
∗ −M̂2

]
, ψ̄2 =

[
ψ̄(µ1, τ) ΣT

2 Y
T
1

∗ −M̂2

]
,

ψ̄3 =

[
ψ̄(µ2, 0) ΣT

1 Y2
∗ −M̂2

]
, ψ̄4 =

[
ψ̄(µ2, τ) ΣT

2 Y
T
1

∗ −M̂2

]
. (64)

ψ̄(µ1, 0) = ψ̄(τ̇(t), τ(t))|τ̇(t)=µ1,τ(t)=0,
ψ̄(µ2, 0) = ψ̄(τ̇(t), τ(t))|τ̇(t)=µ2,τ(t)=0,
ψ̄(µ1, τ) = ψ̄(τ̇(t), τ(t))|τ̇(t)=µ1,τ(t)=τ ,
ψ̄(µ2, τ) = ψ̄(τ̇(t), τ(t))|τ̇(t)=µ2,τ(t)=τ .

Now, we prove that E{ψ̄γ} < 0 (γ = 1, 2, 3, 4) hold if
(14)-(23) are satisfied. Hence, if E{ψ̄γ} < 0 (γ = 1, 2, 3, 4)
hold, E{χT (t)℘(t)χ(t)} < 0 is satisfied. Then the error
system (10) is globally asymptotically stable in the mean
square, and the generally Markovian INNs drive system (6)
and response system (7) are synchronous.

Let Υ̂γ
1 = Θ̂γ

1 +
M∑
b=1

λabHb, Υ̂
γ
2 = Θ̂γ

2 +
M∑
b=1

λabKb,

Θ̂γ
1 = e1(Γt+Γ̄γ)eT1 , Θ̂

γ
2 = e13(Γt+Γ̄γ)eT13, (γ = 1, 2, 3, 4).

Γ̄1 = Γ(τ̇(t), τ(t))|τ̇(t)=µ1,τ(t)=0,
Γ̄2 = Γ(τ̇(t), τ(t))|τ̇(t)=µ1,τ(t)=τ ,
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Γ̄3 = Γ(τ̇(t), τ(t))|τ̇(t)=µ2,τ(t)=0,
Γ̄4 = Γ(τ̇(t), τ(t))|τ̇(t)=µ2,τ(t)=τ .

If a /∈ Ca
k , one gets

M∑
b=1

λabHb =
∑

b∈Ca
k

λabHb + λaaHa

+
∑

b∈Ca
uk,b̸=a

λabHb, where λab ≥ 0, b ̸= a and 0 ≤∑
b∈Ca

uk,b̸=a

λab = −λaa −
∑

b∈Ca
k

λab.

From Hb −Ha − V1ab ≤ 0 (∀b ∈ Ca
k ) in (14) and Hb −

Ha ≤ 0 (∀b ∈ Ca
uk, b ̸= a) in (16), one has∑

b∈Ca
k

λabHb + λaaHa +
∑

b∈Ca
uk,b̸=a

λabHb

≤
∑
b∈Ca

k

λabHb + λaaHa +
∑

b∈Ca
uk,b̸=a

λabHa

=
∑
b∈Ca

k

λabHb + λaaHa + (−λaa −
∑
b∈Ca

k

λab)Ha

=
∑
b∈Ca

k

λab(Hb −Ha)

=
∑
b∈Ca

k

(λab +ϖab+ △ab)(Hb −Ha)

=
∑
b∈Ca

k

[λab(Hb −Ha) + (ϖab+ △ab)(Hb −Ha)]. (65)

Noting that V1ab ≥ 0, △ab∈ [−ϖab, ϖab], ∀b ∈ Ca
k , and

Hb −Ha ≤ 0, ∀b ∈ Ca
uk, b ̸= a, one has

(ϖab+ △ab)(Hb −Ha) ≤ (ϖab+ △ab)V1ab ≤ 2ϖabV1ab,∀b ∈ Ca
k .

(66)

Hence, one gets

Υ̂γ
1 ≤ Θ̂γ

1 +
∑
b∈Ca

k

(λab(Hb −Ha) + 2ϖabV1ab). (67)

Similarly, for Kb−Ka−V2ab ≤ 0 (∀b ∈ Ca
k ) in (15) and

Kb −Ka ≤ 0 (∀b ∈ Ca
uk, b ̸= a) in (17), one has

Υ̂γ
2 ≤ Θ̂γ

2 +
∑
b∈Ca

k

(λab(Kb −Ka) + 2ϖabV2ab). (68)

Hence, from (14)-(23), one gets E{ψ̄γ} < 0, (γ = 1, 2, 3, 4).

If a ∈ Ca
k , according to λaa = −

∑
b∈C,b̸=a

λab, there is

Hb ≤ Hl, for b, l ∈ Ca
uk, one has

M∑
b=1

λabHb

=
∑

b∈Ca
k ,b̸=a

λabHb +
∑

b∈Ca
uk

λabHb + λaaHa

=
∑

b∈Ca
k ,b̸=a

λab(Hb −Ha) +
∑

b∈Ca
uk

λab(Hb −Ha)

≤
∑

b∈Ca
k ,b̸=a

λab(Hb −Ha) +
∑

b∈Ca
uk

λab(Hl −Ha), (l ∈ Ca
uk).

(69)

From Hb−Ha−V1ab ≤ 0 (∀b ∈ C, b ̸= a) in (24), one has

∑
b∈Ca

k ,b̸=a

λab(Hb −Ha)

≤
∑

b∈Ca
k ,b̸=a

[λab(Hb −Ha) + 2ϖabV1ab], (70)

∑
b∈Ca

uk

λab(Hl −Ha)

≤
∑

b∈Ca
uk

[λab(Hl −Ha) + 2ϖabV1al]. (71)

From λaa = −
∑

b∈Ca
k ,b̸=a

λab −
∑

b∈Ca
uk

λab, one gets

∑
b∈Ca

uk

λab = −λ̄aa −
∑

b∈Ca
k ,b̸=a

λab = λa, (72)

∑
b∈Ca

uk

λ̄ab = −λaa −
∑

b∈Ca
k ,b̸=a

λ̄ab. (73)

Then, we have∑
b∈Ca

uk

ϖab

=
1

2
(−

∑
b∈Ca

uk

λab +
∑

b∈Ca
uk

λ̄ab)

=
1

2
(λ̄aa +

∑
b∈Ca

k ,b̸=a

λab − λaa −
∑

b∈Ca
k ,b̸=a

λ̄ab)

= ϖaa −
∑

b∈Ca
k ,b̸=a

ϖab

= Λ̂a. (74)

Thus, we get∑
b∈Ca

uk

λab(Hb −Ha) ≤ λa(Hl −Ha) + 2Λ̂aV1al. (75)

Hence, one gets

Υ̂γ
1 ≤ Θ̂γ

1 + λa(Hl −Ha) + 2Λ̂aV1al

+
∑

b∈Ca
k ,b̸=a

(λab(Hb −Ha) + 2ϖabV1ab). (76)

Similarly, for Kb −Ka − V2ab ≤ 0 (∀b ∈ C, b ̸= a) in (25),
one has

Υ̂γ
2 ≤ Θ̂γ

2 + λa(Kl −Ka) + 2Λ̂aV2al

+
∑

b∈Ca
k ,b̸=a

(λab(Kb −Ka) + 2ϖabV2ab). (77)

Hence, from (24) to (31), one gets E{ψ̄γ} < 0 (γ = 1, 2, 3, 4).
Remark 4: In most existing generally uncertain Marko-

vian neural networks [27], [45], [46], Schur complement and
matrix inequality of Lemma 2 in [52] are adopted to deal with
the estimate error △ab and the completely unknown transition
rate “?” in the generally uncertain TRM. Different from these
papers, only one set of relaxation variables are adopted in
this paper to deal with generally uncertain rates of INNS,
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which reduces the dimension and computational complexity
of synchronization conditions.

Remark 5: The DPTLKF in (32) and HOPRII are applied
in this paper to obtain the new synchronization of generally
uncertain INNS, and the new delay-range-dependent synchro-
nization conditions including more information about time-
varying delay and its derivative are proposed in Theorem 1.

Remark 6: From the viewpoint of practical application,
the Lyapunov functions contain more information about INNs
system, which could reduce the conservativeness of the syn-
chronization conditions and obtain better controllers of the
system.

In Theorem 1, the synchronization problem of Markovian
inertial neural networks is investigated. Since matrices Fl, F̂l,
and Lla (l = 1, 2) are not given, the matrix inequalities are
nonlinear. Hence, the desired controllers could not be directly
solved. According to [26], [53], the nonlinear matrix inequal-
ities are converted into linear matrix inequalities in Theorem
2, and the corresponding controllers could be obtained.

Theorem 2. Under Assumption 1, the given scalars
ρ1, ρ2, the drive system (6) and response system (7) are
synchronous if there are any matrices X1 ∈ R2n×2n, X2 ∈
R6n×6n, Yl ∈ R4n×4n (l = 1, 2), Jla ∈ Rn×n (l = 1, 2), any
invertible matrices F , F̂ , symmetric matrices P1 ∈ R4n×4n,
Pv ∈ R2n×2n, Pv > 0 (v = 2, 3), Qkp, Qkq ∈ R2n×2n (k =
3, 4), Zl (l = 1, 2), symmetric positive definite matrices Ha,
Ka, Vlab (l = 1, 2), R, M1 ∈ R2n×2n, M2 ∈ Rn×n and
Ql ∈ R2n×2n (l = 1, 2), positive definite diagonal matrices
R1, R2, R3 such that, for any a ∈ C, the succeeding linear
matrix inequalities are satisfied.

If a /∈ Ca
k ,

Hb −Ha − V1ab ≤ 0, ∀b ∈ Ca
k , (78)

Kb −Ka − V2ab ≤ 0, ∀b ∈ Ca
k , (79)

Hb −Ha ≤ 0, ∀b ∈ Ca
uk, b ̸= a, (80)

Kb −Ka ≤ 0, ∀b ∈ Ca
uk, b ̸= a, (81)

[
Ξ̃(µ1, 0) ΣT

1 Y2
∗ −M̂2

]
<0, (82)[

Ξ̃(µ1, τ) ΣT
2 Y

T
1

∗ −M̂2

]
<0, (83)

[
Ξ̃(µ2, 0) ΣT

1 Y2
∗ −M̂2

]
<0, (84)[

Ξ̃(µ2, τ) ΣT
2 Y

T
1

∗ −M̂2

]
<0, (85)

[
P2 X1

∗ P3

]
≥ 0,

[
Q̂3q X2

∗ Q̂4q

]
≥ 0 (86)

ϑ0 > 0, ϑ1 > 0, Qk,l > 0, zσ,l > 0 (k = 3, 4, σ, l = 1, 2),
(87)

where
Ξ̃(µ1, 0) = Γ(τ̇(t), τ(t))|τ̇(t)=µ1,τ(t)=0 + Γ̃t + Γaa,
Ξ̃(µ2, 0) = Γ(τ̇(t), τ(t))|τ̇(t)=µ2,τ(t)=0 + Γ̃t + Γaa,

Ξ̃(µ1, τ) = Γ(τ̇(t), τ(t))|τ̇(t)=µ1,τ(t)=τ + Γ̃t + Γaa,
Ξ̃(µ2, τ) = Γ(τ̇(t), τ(t))|τ̇(t)=µ2,τ(t)=τ + Γ̃t + Γaa,
Γ̃t = Sym{eT1Hae14 + eT13Kae15}+ ϕT1Q1ϕ1 + eT1 Z1e1
− eT2 Z1e2 + eT2 Z2e2 − eT3 Z2e3 + τ2eT14M2e14 − ϕT2Q1ϕ2
+ ϕT1Q2ϕ1 − ϕT3Q2ϕ3 + Sym{eT1 Fe13 − eT1 FAe1 − eT1 Fe14
− ρ1e

T
14FAe1 + ρ1e

T
14Fe13 − ρ1e

T
14Fe14 − eT13F̂Bae13

+ eT13F̂ ᾱW 1
a e4 + eT13F̂ β̄W 2

a e5 − eT13F̂e15 − eT13F̂Cae1
− ρ2e

T
15F̂Bae13 + ρ2e

T
15F̂ ᾱW 1

a e4 + ρ2e
T
15F̂ β̄W 2

a e5
− ρ2e

T
15F̂e15 − ρ2e

T
15F̂Cae1 + eT1 J1ae1 + ρ1e

T
14J1ae1

+ eT13J2ae13 + ρ2e
T
15J2ae13}+ τΠT

11M1Π11 + ϕT1 Γ1ϕ1
+ ϕT2 Γ2ϕ2 + ϕT3 Γ3ϕ3,

In matrices Ξ̃(µ1, 0), Ξ̃(µ1, τ), Ξ̃(µ2, 0) and Ξ̃(µ2, τ),
only element Γ̃t is different from Γt in Theorem 1. The other
elements are the same as the elements in Theorem 1.

If a ∈ Ca
k ,

Hb −Ha − V1ab ≤ 0,∀b ∈ C, b ̸= a, (88)
Kb −Ka − V2ab ≤ 0,∀b ∈ C, b ̸= a, (89)

[
Ξ̆(µ1, 0) ΣT

1 Y2
∗ −M̂2

]
<0, (90)[

Ξ̆(µ1, τ) ΣT
2 Y

T
1

∗ −M̂2

]
<0, (91)

[
Ξ̆(µ2, 0) ΣT

1 Y2
∗ −M̂2

]
<0, (92)[

Ξ̆(µ2, τ) ΣT
2 Y

T
1

∗ −M̂2

]
<0, (93)

[
P2 X1

∗ P3

]
≥ 0,

[
Q̂3q X2

∗ Q̂4q

]
≥ 0 (94)

ϑ0 > 0, ϑ1 > 0, Qk,l > 0, zσ,l > 0, (k = 3, 4, σ, l = 1, 2),
(95)

Ξ̆(µ1, 0) = Γ(τ̇(t), τ(t))|τ̇(t)=µ1,τ(t)=0 + Γ̃t + Γ̂aa,
Ξ̆(µ2, 0) = Γ(τ̇(t), τ(t))|τ̇(t)=µ2,τ(t)=0 + Γ̃t + Γ̂aa,
Ξ̆(µ1, τ) = Γ(τ̇(t), τ(t))|τ̇(t)=µ1,τ(t)=τ + Γ̃t + Γ̂aa,
Ξ̆(µ2, τ) = Γ(τ̇(t), τ(t))|τ̇(t)=µ2,τ(t)=τ + Γ̃t + Γ̂aa,

In matrices Ξ̆(µ1, 0), Ξ̆(µ1, τ), Ξ̆(µ2, 0), and Ξ̆(µ2, τ),
only element Γ̂aa is different from Γaa. The other elements
are the same as the elements in Ξ̃(µ1, 0), Ξ̃(µ1, τ), Ξ̃(µ2, 0),
and Ξ̃(µ2, τ).

Γ̂aa = eT1 [
M∑

b∈Ca
k ,b̸=a

[λab (Hb −Ha) + 2ϖabV1ab]

+ λa (Hl −Ha) + 2Λ̂aV1al]e1

+ eT13[
M∑

b∈Ca
k ,b̸=a

[λab (Kb −Ka) + 2ϖabV2ab]

+ λa (Kl −Ka) + 2Λ̂aV2al]e13, (l ∈ Ca
uk).
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Moreover, the desired controller gain matrices are given
as follows

L1a = F−1J1a (96)

L2a = F̂−1J2a (97)

Proof Assume F1 = F , F2 = ρ1F1, F̂1 = F̂ , F̂2 = ρ2F̂1

and FL1a = J1a, F̂L2a = J2a. From Theorem 1, (78)-(97)
hold. The proof is completed.

In Theorem 2, the nonlinear matrix inequalities of syn-
chronization conditions in Theorem 1 are changed into linear
matrix inequalities (LMIs). By adopting LMI toolbox in Mat-
lab, the controllers of INNs system could be obtained from
Theorem 2.

IV. SIMULATION

In this section, two examples are shown to demonstrate
the effectiveness of the proposed method.

Example 1. Consider the INNs system as follows

d2u1(t)

dt2
= −a1(ıt)

du1(t)

dt
− b1(ıt)u1(t) + α1(t)w

1
11(ıt)f1(u1(t))

+ β1(t)w
1
12(ıt)f2(u2(t)) + α(t)w2

11(ıt)f1(u1(t− τ(t))) + β(t)

w2
12(ıt)f2(u2(t− τ(t))) + T1

d2u2(t)

dt2
= −a2(ıt)

du2(t)

dt
− b2(ıt)u2(t) + α(t)w1

21(ıt)f1(u1(t))

+ β(t)w1
22(ıt)f2(u2(t)) + α(t)w2

21(ıt)f1(u1(t− τ(t))) + β(t)

w2
22(ıt)f2(u2(t− τ(t))) + T2 (98)

The activation functions fk(uk(t)) = tanh(uk(t)) (k = 1, 2)

satisfy Assumption 1. We get E1 =

(
0 0
0 0

)
, E2 =(

0.5 0
0 0.5

)
.

The system (98) is considered with the following
parameters

A =

(
1 0
0 1

)
,

B(ıt) =

(
a1(ıt)− ξ1 0

0 a2(ıt)− ξ2

)
, C(ıt) =(

b1(ıt) + ξ1(ξ1 − a1(ıt)) 0
0 b2(ıt) + ξ2(ξ2 − a2(ıt))

)
,

(ıt = 1, 2, 3), B1 =

(
1.0 0
0 1.5

)
, B2 =

(
1.6 0
0 1.2

)
,

B3 =

(
1.2 0
0 0.9

)
, C1 =

(
−1.1 0
0 −0.9

)
,

C2 =

(
−0.7 0
0 −1.0

)
, C3 =

(
−1.0 0
0 −1.1

)
,

W 1
1 =

(
0.9 0.2
−0.5 2.7

)
, W 1

2 =

(
−1.0 1.7
−1.0 1.3

)
,

W 1
3 =

(
−1.0 1.4
−1.0 1.0

)
,

W 2
1 =

(
0.9 2.1
−3.2 0.8

)
, W 2

2 =

(
−1.7 0.8
−1.2 1.3

)
, W 2

3 =(
−1.2 1.3
−1.2 0.3

)
, f1 = f2 = 1, ᾱ = 0.01, β̄ = 0.02, να =

0.002, νβ = 0.004, τ(t) = 0.8 + 0.2sin(t), τ = 1.0, µ1 =

−0.2, µ2 = 0.2. The transition matrix is given as

Ω =

 ? ? 2.32+ △13

? −4.75+ △22 2.02+ △23

1.34+ △31 ? −5.05+ △33

 ,

where ϖ13 = 0.1, ϖ22 = ϖ23 = 0.19, ϖ31 = ϖ33 = 0.18.
Set the parameters ρ1 = ρ2 = 1. From Theorem 2, one

gets the following feasible matrices.

L11 =

(
−5.9326 −0.0033
−0.0025 −6.1008

)
, L12 =(

−5.7784 −0.0042
−0.0023 −6.1008

)
, L13 =

(
−5.9842 −0.0033
−0.0027 −6.2532

)
,

L21 =

(
−3.4484 0.0030
−0.0001 −2.8959

)
, L22 =(

−2.7404 0.0021
−0.0003 −3.1412

)
, L23 =

(
0.0961 −0.0006
0.0001 −0.2162

)
.

The trajectories of error system with initial values e1(t) =[
0.3
0.1

]
, e2(t) =

[
0.18
−0.22

]
are given in Figs. 1-2.
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Fig. 1 State trajectories of error system without controllers.
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Fig. 2 State trajectories of error system with controllers.

Through the Theorem 2 and Figs. 1-2, one gets that the error
system is asymptotically stable. So the driven system and
response system could be synchronous under the designed
controllers.

Example 2. Under the obtained results, the image with
a size L×H × 3 could be encrypted. According to [44], the
process of image encryption is shown as follows.
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Input: A color image FO with the size of L×H × 3.
Output: An encrypted image E with the size of L×H .

S1: By separating color image FO with red, green, and
blue components, respectively, pixel series are obtained as
R(i, j), G(i, j), B(i, j) (i ∈ {1, · · · , L}, j ∈ {1, · · · , H}).

S2: Under uncontrolled system (6), by adopting fourth
order Runge-Kutta method with step size 0.001 and the initial
conditions u(0), ♭(0), û(0), ♭̂(0) with more than I = L ×H
times iterations, we could get a group of time series chaotic
signals.

S3: Master system is iterated I times continuously. For
each iteration, we get four values u, ♭, û, ♭̂. Hence, four
floating-point number sequences of X1, X2, X3, X4 with the
length of I = L×H are obtained as follows:

X1 = {x1(1), x1(2), · · · , x1(I)},
X2 = {x2(1), x2(2), · · · , x2(I)},
X3 = {x3(1), x3(2), · · · , x3(I)},
X4 = {x4(1), x4(2), · · · , x4(I)}.

S4: From these sequences, XR, XG and XB are gener-
ated from Xk (k = 1, 2, 3, 4).

xR(i) = (|x1(i)| − ⌊|x1(i)|⌋)× 1014 mod 256

xG(i) = (|x2(i)| − ⌊|x2(i)|⌋)× 1014 mod 256

xB(i) = (|x3(i) + x4(i)| − ⌊|x3(i) + x4(i)|⌋)× 1014 mod 256

where xR(i) ∈ XR, xG(i) ∈ XG and xB ∈ XB (i =
1, · · · , I). ⌊⌋ represents the values of nearest integer that is
less than or equal to X . The mod(·, ·) represents the remainder
after division. The size of each sequence (xi) is I .

(a) Lena. (b) House. (c) Mandrill. (d) Splash.

(e) Flowers. (f) Jelly. (g) Lady. (h) Tree.

Fig. 3 The original images.

5: The RGB components of FS are encrypted by XR, XB

and XG, and eR, eB and eG of the encrypted image could be
obtained as follows.

eR(i) = fR(i)⊕ xR(i)

eG(i) = fG(i)⊕ xG(i)

eB(i) = fB(i)⊕ xB(i)

where ⊕ is the bitwise XOR operator. fR(i), fG(i) and fB(i)
are the pixel sequence of the shuffled image. The encryption

process of color image is shown as Figs. 3-9. The entropy
values of original and encrypted images in Fig. 3 are shown
in Table I. The obtained values of the encrypted images are
very close to the theoretical value 8. According to [44], [54],
[55], the encrypted image in this paper approaches a random
source, and information leakage from the encryption algorithm
is negligible.

Fig. 4 The original image of the tree.
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Fig. 5 Histogram of the RGB components of the tree.
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Fig. 6 Histogram of the RGB components of the shuffled
image of the tree.
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Fig. 7 The shuffled image of the tree.
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Fig. 8 Histogram of the RGB components of the encrypted
image of the tree.
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Fig. 9 Correlations of two adjacent pixels in horizontal,
vertical, and diagonal directions of the red component of the

tree. The figures a-c denote the original image, and d-f
denote encrypted image.

CC is the correlations between original image and en-
crypted image in [44], [54], [55]. The correlation between
two adjacent pixels is shown in Table II. According to the
CC values, the proposed method in this paper has gained
good performance. The original and encrypted images are
significantly different because the CC values of the encrypted

TABLE I
ENTROPY ANALYSIS OF RGB COMPONENTS

Image Size Original Image Encrypted Image
Red Green Blue Red Green Blue

Lena 512×512 7.2531 7.5940 6.9684 7.9992 7.9994 7.9993
House 512×512 7.4156 7.2295 7.4354 7.9993 7.9993 7.9992

Mandrill 512×512 7.7067 7.4744 7.7522 7.9992 7.9993 7.9994
Splash 512×512 6.9481 6.8845 6.1265 7.9992 7.9994 7.9993

Flowers 362×500 7.3824 7.2345 7.3641 7.9989 7.9990 7.9989
Jelly 256×256 5.2626 5.6947 6.5464 7.9973 7.9970 7.9913
Lady 256×256 6.4200 6.4457 6.3807 7.9972 7.9968 7.9973
Tree 256×256 7.2104 7.4136 6.9207 7.9976 7.9973 7.9969

TABLE II
CCS OF TWO ADJACENT PIXELS IN THE

ORIGINAL/ENCRYPTED IMAGES

Image Red Green Blue
H V D H V D H V D

Original Lena 0.9798 0.9893 0.9697 0.9327 0.9576 0.9183 0.9327 0.9576 0.9183
Encrypted Lena 0.0016 -0.0035 0.0019 0.0015 -0.0011 -0.0008 -0.0011 0.0000 0.0001
Original House 0.9536 0.9579 0.9224 0.9725 0.9686 0.9445 0.9391 0.9423 0.8901

Encrypted House 0.0028 -0.0004 -0.0024 -0.0008 0.0009 -0.0004 0.0011 0.0013 0.0023
Original Mandrill 0.9231 0.8660 0.8543 0.9073 0.8809 0.8399 0.8655 0.7650 0.7348

Encrypted Mandrill 0.0030 -0.0007 0.0029 -0.0005 0.0031 0.0014 0.0018 -0.0039 -0.0019
Original Splash 0.9936 0.9951 0.9894 0.9826 0.9789 0.9649 0.9812 0.9871 0.9711

Encrypted Splash -0.0011 -0.0050 -0.0032 -0.0007 0.0038 -0.0017 -0.0021 0.0036 0.0017
Original Flowers 0.9718 0.9719 0.9551 0.9527 0.9527 0.9256 0.9510 0.9497 0.9218

Encrypted Flowers 0.0001 0.0004 -0.0020 -0.0005 0.0003 0.0026 0.0051 0.0012 -0.0066
Original Jelly 0.9745 0.9763 0.9537 0.9890 0.9880 0.9799 0.9757 0.9801 0.9603

Encrypted Jelly 0.0063 -0.0065 -0.0024 -0.0020 -0.0003 -0.0026 0.0009 0.0019 0.0045
Original Lady 0.9729 0.9622 0.9482 0.9584 0.9519 0.9377 0.9719 0.9647 0.9500

Encrypted Lady -0.0010 -0.0046 0.0019 0.0002 0.0035 -0.0033 0.0027 -0.0049 0.0052
Original Tree 0.9590 0.9361 0.9159 0.9612 0.9406 0.9265 0.9687 0.9457 0.9318

Encrypted Tree 0.0011 0.0013 -0.0041 0.0028 0.0059 -0.0018 0.0017 0.0008 0.0001

images in Table II approach to 0.

V. CONCLUSION

In this paper, the synchronization problem of delayed
INNs with generally uncertain Markovian jumping and random
connection weight strengths is investigated. By implementing
the DPTLKF and HOPRII, the DRDSC and corresponding
controllers are obtained in this paper. Finally, two exam-
ples including image encryption application are shown to
demonstrate the effectiveness of the theoretical results. Further
studies include finite-time sampled-data synchronization and
impulsive synchronization control of INNs with generally
uncertain Markovian jumping and unbounded time delay.
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