
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Delay-induced homoclinic bifurcations in modified gradient bistable systemsDelay-induced homoclinic bifurcations in modified gradient bistable systems
and their relevance to optimizationand their relevance to optimization

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1063/5.0035959

PUBLISHER

AIP Publishing

VERSION

VoR (Version of Record)

PUBLISHER STATEMENT

This is an Open Access Article. It is published by AIP under the Creative Commons Attribution 4.0 Unported
Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

LICENCE

CC BY 4.0

REPOSITORY RECORD

Janson, Natalia, and Christopher J. Marsden. 2021. “Delay-induced Homoclinic Bifurcations in Modified
Gradient Bistable Systems and Their Relevance to Optimization”. Loughborough University.
https://hdl.handle.net/2134/18282701.v1.

https://lboro.figshare.com/
https://doi.org/10.1063/5.0035959


Chaos ARTICLE scitation.org/journal/cha

Delay-induced homoclinic bifurcations in
modified gradient bistable systems and their
relevance to optimization

Cite as: Chaos 31, 093120 (2021); doi: 10.1063/5.0035959
Submitted: 1 November 2020 · Accepted: 26 August 2021 ·

Published Online: 20 September 2021 View Online Export Citation CrossMark

Natalia B. Jansona) and Christopher J. Marsden

AFFILIATIONS

Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom

a)Author to whom correspondence should be addressed: N.B.Janson@lboro.ac.uk

ABSTRACT

Nonlinear dynamical systems with time delay are abundant in applications but are notoriously difficult to analyze and predict because delay-
induced effects strongly depend on the form of the nonlinearities involved and on the exact way the delay enters the system. We consider a
special class of nonlinear systems with delay obtained by taking a gradient dynamical system with a two-well “potential” function and replacing
the argument of the right-hand side function with its delayed version. This choice of the system is motivated by the relative ease of its graphical
interpretation and by its relevance to a recent approach to use delay in finding the global minimum of a multi-well function. Here, the simplest
type of such systems is explored for which we hypothesize and verify the possibility to qualitatively predict the delay-induced effects, such as a
chain of homoclinic bifurcations one by one eliminating local attractors and enabling the phase trajectory to spontaneously visit vicinities of
all local minima. The key phenomenon here is delay-induced reorganization of manifolds, which cease to serve as barriers between the local
minima after homoclinic bifurcations. Despite the general scenario being quite universal in two-well potentials, the homoclinic bifurcation
comes in various versions depending on the fine features of the potential. Our results are a pre-requisite for understanding general highly
nonlinear multistable systems with delay. They also reveal the mechanisms behind the possible role of delay in optimization.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0035959

Can one predict, without resorting to numerical analysis, the
behavior of a nonlinear system with time delay described by
a delay-differential equation (DDE) as the delay is gradually
increased? Generally not, as it is highly sensitive both to the form
of nonlinearities and to how the delay is introduced. Moreover,
unlike in ordinary differential equations, their phase space is
infinite-dimensional, and it is generally impossible to reverse the
time; therefore, nonlinear DDEs represent a challenge both for
analytical and numerical treatments. However, here, we construct
a special form of highly nonlinear DDEs, in which one can qual-
itatively predict a sequence of bifurcations as the delay grows.
Specifically, we slightly modify the most basic setting for opti-
mization, when the parameter to be optimized decreases—as the
negative of the gradient of some multi-well “cost” function (called
“potential energy landscape function” in physics problems), by
delaying its argument. After overviewing some earlier rigorous
results available for simpler DDEs and interpreting them in terms

of the potential function, we use these to predict phenomena in
more complex DDEs with two-well potentials, which could be
extended to multi-well potentials in the future. We hypothesize
and verify some universality in the sequence of global homoclinic
bifurcations and also establish how different forms of these bifur-
cations are realized with different local features of the potential.
Delay-induced global bifurcations can be the means to remove the
barriers between the local minima of the cost function and thus
to allow the phase trajectory to approach all minima, similarly
to what occurs in a famous optimization method of simulated
annealing thanks to random forces. This effect seems promising
for optimization where the delay could replace random forces.
Since the barriers are embodied in the manifolds of saddle points
or saddle cycles, their reorganization via homoclinic bifurcations
is key to understanding how the barriers disappear as the delay
grows. We explain rearrangement of manifolds to shed light on
this mechanism.
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I. INTRODUCTION

Differential equations with time delay represent a special class
of dynamical systems, which are routinely used to model the behav-
ior of both natural systems and artificial devices alongside ordinary
differential equations (ODEs). Delay equations have been intro-
duced in the 1940s as models of population dynamics1,2 and later of
other biological phenomena.3–12 In some models, the delay appears
in the term(s) added to the components(s) of the original ODE.13–15

Other models contain combinations of delayed and non-delayed
terms from the outset.2,16,17

Delay-differential equations (DDEs) present a considerably
greater challenge for the analysis than ODEs because their state is
represented by a (vector-) function on an interval rather than by a
finite-dimensional vector; hence, the dimension of their phase space
is infinitely large. Also, time reversal is generally not permitted,
which complicates the detection of unstable objects. Moreover, the
effects induced by delay greatly depend on a particular form of the
DDE under study and on the exact way the delay is introduced. The
latter makes it hardly possible to predict, before resorting to numer-
ical analysis and actually observing the behavior, the dynamics of
even a scalar equation with a single delay τ ≥ 0, i.e., of ẋ = f(x, xτ )
with x, f ∈ R and xτ = x(t − τ ) for an arbitrary f.

However, by extending the results from the qualitative theory
of ODEs,18–21 it has been possible to qualitatively predict certain
phenomena in special cases. Specifically, some predictions were
made for DDEs reducible to the form ẋ = f(xτ ) − g(x), often with
g(x) = λx (λ ∈ R),15,17,22–25 or to an even simpler form ẋ = f(xτ )
for some special forms of f.26 With this, it is usually impossible to
give accurate analytical predictions of the behavior of general non-
linear DDEs, and their studies heavily rely on numerical tools. Even
more challenging in DDEs is the detection and interpretation of
homoclinic and heteroclinic, i.e., global, bifurcations. The reason
is that they are based on invariant manifolds, which are usually
not confined to a small volume of the phase space (i.e., not local-
ized) and can be one-, two-, many-, or infinite-dimensional. The
tools available to date can handle only unstable invariant manifolds
in DDEs, and examples considered involve one-dimensional27 and
two-dimensional28,29 manifolds.

Here, we explore a special class of nonlinear DDEs with bista-
bility for which we hypothesize and verify the possibility to predict
qualitatively how the behavior changes with the increase of delay.
General bistable dynamical systems with delay are popular models
in a range of areas, such as optical systems,30 laser systems,31 neu-
ral networks, atmospheric physics,32 and ice dynamics;33 therefore,
our work will provide an additional insight into typical bifurcations
determining their behavior.

The nonlinear DDE to explore is constructed by modifying a
nonlinear ODE with arguably the most predictable behavior, which
is the gradient dynamical system of the form

ẋ = −∇V(x), (1)

where x(t) ∈ R is the state, t is the time, ẋ = dx
dt

, and V(x) :
R → R is the potential energy function at least twice continuously
differentiable.34 Also, ∇ is the gradient operator, which for a scalar x
is equivalent to ∂

∂x
. This system models the behavior of a particle in

a potential energy landscape V immersed in viscous fluid so that the

particle cannot oscillate. Assuming that V is a multi-well function
with several maxima separating them, the system converges to one
of the local minima in a non-oscillatory manner, and the choice of
the minimum depends on the initial conditions. System (1) repre-
sents the most basic setting for an optimization problem, which in
practical applications is posed for x(t) ∈ RN, V(x) : RN → R with
N ≥ 1, where V is the multi-well “cost” function, and x is the vec-
tor of parameters in need of optimization.35,36 Solving this ODE
can only deliver a local minimum; therefore, to find the global
one, this setting is usually extended to enable the particle to over-
come the barriers between the minima. Most popular extensions
rely on incorporating random force that makes the particle visit var-
ious regions of the landscape, including the vicinity of the global
minimum.37–40

We delay the argument of the right-hand side of (1) by some
amount τ ≥ 0 and thus obtain a DDE to study,

ẋ = f(xτ ), f(z) = −
dV(z)

dz
, (2)

where x, f, V, z ∈ R, xτ = x(t − τ ). This form of (2) allows us to
make some rough qualitative predictions about its solutions based
on the knowledge of general bifurcation theory and of general delay-
induced effects in dynamical systems. Specifically, in Ref. 41, it was
hypothesized and numerically demonstrated that an increase of τ
could eliminate one by one all local attractors via global homoclinic
and possibly heteroclinic bifurcations and give rise to a single large
attractor embracing all local minima of V. Thus, the phase trajectory
could be forced to eventually approach all minima of V, including
the global one, regardless of the initial conditions. This means that
the delay could roughly mimic the effect from adding large noise
to (1), as in global optimization with simulated annealing.38 How-
ever, here, it would be achieved in a fully deterministic manner and
through an entirely different mechanism.

Specifically, elimination of local attractors is only possible if
their individual basins of attraction cease to be separated by bound-
aries formed by manifolds of saddle fixed points or of saddle cycles.
In the context of optimization, these manifolds serve as the barriers
between the minima of V. After the homoclinic bifurcations, these
manifolds do not disappear but reorganize in such a way that they
cease being the barriers. Thus, homoclinic bifurcations could effec-
tively break down the barriers between the local minima. This would
provide a mechanism, alternative to random noise, for overcoming
barriers as required in optimization. With this, understanding of the
way the manifolds reorganize as the delay grows would provide the
key to understanding if and how optimization by delay could work.

As a starting point and a pre-requisite for understanding the
phenomena in delay systems with general multi-well V depending
on one or many variables, here, we focus on system (2) with two-well
smooth landscape functions V such that V(z) → ∞ as |z| → ∞ and
V, z ∈ R.

In Sec. II, we overview mathematical theorems related to some
simpler delay systems, interpret and illustrate them for the general
reader, and put into context of a DDE (2) with energy V. In Sec. III,
we analyze stability of the fixed points of (2) and its relevance to
homoclinic bifurcations. In Sec. IV, we combine rigorous theoreti-
cal and quantitative results overviewed in Secs. II and III with the
powerful apparatus of the qualitative theory of ODEs,18–21 which has
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proved to be successfully applicable to DDEs as well in order to pre-
dict, reveal, and explain the rather intricate bifurcation phenomena
induced by delay in (2) with a double-well V. Here, we illustrate
these phenomena with specific examples of V in (2), demonstrate
homoclinic bifurcations of various types, and reveal distinctions and
universality in the delay-induced behavior of such systems. In Sec. V,
we put the delay-induced phenomena in the context of an optimiza-
tion problem and demonstrate how optimization could work with
two local minima if one uses the delay. In Sec. VI, we discuss the
results obtained.

II. DELAY-INDUCED BEHAVIOR IN SIMPLE SYSTEMS

In order to predict some phenomena that might be caused
by delay in systems (2) with two- and multi-well landscapes V, it
is important to know about the phenomena occurring in systems
with V having only one well. Note that multi-well functions V can
be obtained by gluing together the segments of single-well Vs and
smoothing out all the joints. Thus, bifurcations involving objects
localized within a single minimum could be expected in those with
more minima, too. This section overviews the results available for
functions V with a single minimum and up to one maximum.

Most theorems formulated for (2) assume that τ = 1 and f is
amendable;26,42–50 i.e., the equation reads

dx

dt
= g(x(t − 1)), g(z) = −

dV1(z)

dz
. (3)

However, introducing t = sτ and x(t) = y(s) reduces (2) to
dy
ds

= τ f(y(s − 1)), i.e., to (3) with g(z) = τ f(z) and the appropri-
ate change in notations. Thus, the results valid for (3) can be easily
adapted to (2) by using the fact that the increase of τ in (2) is equiva-
lent to sharpening and deepening the wells of V1 in (3), as illustrated
in Fig. 1.

Note that a typical global bifurcation in the DDEs being con-
sidered is associated with the formation of a homoclinic orbit, also
called a homoclinic loop, starting and finishing at the same saddle
fixed point. For a periodic orbit born from this loop, as the sys-
tem approaches the bifurcation point, the period tends to become
infinitely large. In ODEs, there exists another global bifurcation with
the same feature of the periodic orbit involved, called a saddle-node
homoclinic bifurcation and otherwise known as SNIPER, which was
first described by Andronov in the 1940s (see Sec. 30 of Ref. 51). A
SNIPER bifurcation occurs when, as the control parameter changes
monotonously, two fixed points (a saddle and a node) move toward
each other while staying on the same limit cycle and disappear in a
saddle-node bifurcation. After this bifurcation, the whole of the limit
cycle becomes the attractor. In the setting we consider, the only con-
trol parameter is the time delay τ , and in DDEs with constant delays,
the number or locations of the fixed points are not affected by the
numerical value of the delay. Thus, the increase of the delay alone
cannot lead to the movements or the disappearance of the fixed
points, and the SNIPER bifurcation cannot occur in the situations
we consider in this paper.

The idea of using delay for optimization is inspired by the
knowledge of typical behaviors of (3) with relatively simple g.
Although the key relevant theorems are available from highly spe-
cialized literature, they have not been previously presented in a form

FIG. 1. Illustration of the relationship between Eq. (2) with arbitrary τ and (3)
with τ = 1 and g(z) = τ f(z). For (2) with τ = 5, the left column shows (b) f(z)
= 0.5z − 0.05z2 − 0.1z3, (a) the respective landscape V(z), and (c) f ′(z). The
right column gives the respective functions for (3), namely, (e) g(z) = 5f(z), (d)
the landscape V1(z) = 5V(z), and (f) g′(z) = 5f ′(z).

accessible to a more general reader and not interpreted in the context
of the landscape, which we need before explaining how we combine
them in order to predict the behavior of (2) with complex-shaped V.
In Subsections II A–II C, three prominent special cases of g in (3) are
considered, namely, monotonically decreasing with a single zero-
crossing and making two zero-crossings with a single maximum or a
single minimum. We illustrate these cases with specially constructed
examples.

A. Existence of a periodic orbit

In Refs. 42 and 43, Eq. (3) was considered with g(z) contin-
uously differentiable and monotonically decreasing on some open
neighborhood of z = 0, crossing zero at z = 0, and in addition sat-
isfying zg(z) < 0 for all z (= 0; i.e., g(z) should be strictly positive for
negative z and strictly negative for positive z. Therefore, the fixed
point of (3) is at x = 0.

In addition, g(z) should either be bounded from below for all z
[Fig. 2(b)] or satisfy |g(z)| ≤ A if |z| ≤ A, where A is some positive
constant [Fig. 2(d)]. If |g′(0)| > π

2
, then (3) has a non-zero periodic

solution. In Ref. 45, the stability theorem for this periodic solution
is proved. From the viewpoint of the landscape, to enable a peri-
odic solution, the single well of the twice differentiable V1 should be
sufficiently sharp at the bottom [Figs. 2(a) and 2(c)].

Note that the quoted theorems require that g(z) crosses zero at
z = 0. However, obviously, the same results can be adapted to g(z)
crossing zero at any z by making an appropriate change of variable.
Thus, while the shape of g contains all the necessary information for
the predictions, its localization on the z-axis is not essential.
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FIG. 2. Illustration of the theorems for the existence of periodic solutions in (3).
In (b) and (d), blue lines show two functions g(z) allowing for periodic solutions,
and the upper panels (a) and (c) show the respective landscapes. The periodic
solution exists if the slope of the tangent line to g(z) at z = 0 (red line) is
|g′(0)| = tan(ϕ) > π

2
. Functions g(z) are (b) g(z) = 8

[
e−(z+z∗)/10

−
(
1 + e−(z+z∗)

)−1]
with parameter z∗ ≈ 1.69132, such that g′(0)

≈ −1.726 64, and (d) g(z) =
[
−

(
1 + e−10z

)−1
+ 0.5

][
z
8

+ 1
]2

− 2z
5

such that g′(0) = −2.9.

B. Existence of a homoclinic orbit to a fixed point

Equation (3) with a non-monotonic g was studied in Refs. 52
and 53 but rewritten as

dx

dt
= ah(x(t − 1)), a > 0, h(z) = −

dV2(z)

dz
. (4)

Here, h(z) is required to cross zero at z = 0 from below to above,
and at z = −|b|, b ∈ R from above to below. Parameter a controls
the sharpness of the two extrema of V2. It has been shown that at
certain a, in (4), there exists a stable periodic orbit around x2 = −|b|
(red circle in Fig. 3). As a increases, this orbit grows in size, and,
under some additional quantitative conditions on h(z), at a equal to
some critical value, a∗ can clash with the saddle fixed point at x1 = 0
(green circle in Fig. 3) and form a homoclinic loop. At a > a∗, this
orbit no longer exists.

This scenario is illustrated in Fig. 3 for a function h(z), which
has the required properties on the domain considered [see Fig. 3(a)
and caption]. With this h, Eq. (4) has two relevant fixed points:
x2 = −2.5 (red circle) and x1 = 0 (green circle) corresponding to
the local minimum and maximum of V2, respectively [Figs. 3(a)
and 3(b)]. At small a, the point x2 is stable, but it loses stability at
a ≈ 1.396 at which |ah′(−2.5)| = π

2
. The point x1 is unstable for

any a > 0. At a = 2.24, there exists a stable periodic orbit around x2

shown in Fig. 3(f) in projection on the plane (x(t), x(t − 1)), and the

FIG. 3. Illustration of the theorem for the occurrence of a homoclinic bifurcation
in (4), in which a stable periodic orbit collides with the saddle-focus fixed point to
form a homoclinic loop. (a) Function h(z) = 0.5z − 0.05z2 − 0.1z3 in a suitable
domain z ∈ [−4, 1], which crosses zero at z = 0 and at z = −2.5, (b) land-
scape V2. Filled circles indicate fixed points: red at the minimum and green at
the maximum of V2. (c) Homoclinic solution existing at a = a∗ ≈ 2.3765 and (d)
the respective phase portrait. (e) Stable periodic solution and (f) the respective
orbit at a = 2.24. In (d) and (f), empty red circles indicate the unstable (saddle)
fixed point x = −2.5 not participating in the homoclinic bifurcation.

respective solution x(t) is given in (e). At a = a∗ ≈ 2.3765, a homo-
clinic orbit is formed as the periodic orbit collides with x1, as shown
in (d). In (c), the respective homoclinic solution x(t) is shown, which
departs from x = 0 starting from some time instant in the past and
approaches x = 0 as t → ∞.54

One can interpret these events in the context of Shilnikov’s
theorem about the birth of a periodic orbit from the breakdown of
the homoclinic loop of a saddle-focus fixed point.55,56 For h(z) in
Fig. 3(b) for a range of values of a > 0, the fixed point x1 = 0 of (4)
is a saddle focus with a single real positive eigenvalue λ1, whereas
all of its other eigenvalues are complex-conjugate with negative real
parts (see Sec. III). According to Shilnikov’s theorem for ODEs and a
relevant study of a special form of the DDE (3),50,52 the breakdown of
a homoclinic loop of a saddle-focus gives birth to a periodic orbit if
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at the instant of homoclinic bifurcations the loop is “safe.” The latter
means that the saddle quantity of this saddle fixed point is nega-
tive, i.e., σ = λ1 + Re(λ2,3) < 0, where λ2,3 are eigenvalues with the
negative real parts closest to zero.

From this viewpoint, in (4), the homoclinic loop shown in
Fig. 3(d) is formed as the parameter a decreases to its critical value
a∗ from above. As a is further decreased below a∗, from this homo-
clinic orbit, a periodic orbit is born [Fig. 3(f)] provided the negativity
of σ of the fixed point x1 = 0. If σ > 0, then in ODEs, according to
Shilnikov, the breakdown of the homoclinic loop should produce
chaos rather than periodic behavior.

C. Existence of chaos from a homoclinic orbit to a
saddle cycle

Equation (3) with a relatively simple non-monotonic g can
demonstrate a different sort of a homoclinic bifurcation arising
from the tangency of a stable and an unstable manifold of a sad-
dle (hyperbolic) periodic orbit, which can lead to chaos. This global
bifurcation was theoretically discovered for ODEs in Refs. 57 and 58
and described in a more accessible manner in Sec. 7.2.1 of Ref. 20. In
Refs. 49 and 59, the existence of such chaos has been proved for very
specific DDEs for which a solution could be constructed analytically.
Also, some general properties of function g of (3) have been out-
lined, which should lead to similar behavior. Specifically, g(z) should
cross zero twice: from below to above at smaller z and from above
to below at larger z. Here, we give an example of a smooth function
g(z) = ah(z) for (3), with h(z) expressed as

h(z) =

(
−

1

1 + e− z
2

+ e− z
2

) (
2 − e− z

2

)
(5)

and illustrated in Fig. 4(a), which for a > 0 possesses the properties

given in Refs. 49 and 59. The landscape V2, satisfying h(z) = − dV2(z)
dz

,
is given in Fig. 4(b). In this section, we study (4) with h given by
(5), which is equivalent to (3) with g(z) = ah(z). We will follow the
behavior of (4) and (5) as control parameter a is varied.

There are two fixed points here: x1 = −1.386 29 (maximum of
V2, green circle in Fig. 4) and x2 = 0.962 424 (minimum of V2, red
circle in Fig. 4), which are both saddle for the range of a illustrated
in Figs. 4 and 5.

The saddle cycle, whose manifolds eventually become tan-
gent to each other at the homoclinic bifurcation, is born via
the Andronov–Hopf bifurcation from the saddle point x1 at aAH

= 1
h′(z)

3π
2

≈ 2.8274 (as explained in Sec. III) and exists for a > aAH.

This saddle cycle (not shown in Fig. 4) is located close to its parent
x1 (green circle).

Like in the example of Sec. II B, here, the homoclinic orbit arises
from the tangency of the manifolds of the saddle cycle as the param-
eter a decreases to its critical value a∗ ! 3.913 from above. The
manifolds involved in the formation of this orbit are codimension-
one (i.e., infinite-dimensional) stable and two-dimensional unstable
and cannot be visualized with the numerical tools available to date.
However, chaos just born from the manifolds ceasing to be tangent
and instead intersecting transversally is visualized with a blue line in
Fig. 4(c) at a = 3.913.

FIG. 4. Illustration of the theorem for the occurrence of a homoclinic bifurcation
arising from the manifolds of a saddle periodic orbit in (4) and (5) becoming tan-
gent to each other. Compare with the bifurcation diagram in Fig. 5. In (a), h(z) is
shown and in (b) the respective V2(z). (c)–(f) Phase portraits, with parameter a
decreasing from (c) to (f), and empty circles showing fixed points x1 (green) and
x2 (red), which are both saddle at these values of a. (c) Chaos from a homoclinic
bifurcation at the instant of birth at a = 3.913, (d) chaos as the only attractor
at a = 3.85, (e) chaos (blue line) coexisting with a stable cycle (orange line) at
a = 3.8325, and (f) two stable cycles of different origins coexisting at a = 3.773.

Generally, in Figs. 4(c)–4(f), phase portraits are shown for (4)
and (5) for several values of a as a decreases. Attractors originat-
ing from this homoclinic bifurcation are shown by a blue line,
and attractors originating from the fixed point x2 at the landscape
minimum (red circle) are shown by an orange line.

The description below can be compared with the bifurcation
diagram in Fig. 5. At a = 3.913 [Fig. 4(c)] and a = 3.85 [Fig. 4(d)],
chaos born from the homoclinic bifurcation is the only attractor.
At a ∈ [3.77, 3.84], two attractors coexist. Figure 4(e) shows that
at a = 3.8325, chaos is born from the homoclinic orbit to the sad-
dle cycle together with the coexistent stable cycle born through the
Andronov–Hopf bifurcation from x2. In Fig. 4(f) at a = 3.773, two
coexisting stable cycles are given: the one born from homoclinic
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FIG. 5. A segment of the bifurcation diagram of (4) with h given by (5), which for
every value of a shows the local minima of the solution x(t) (after transients are
removed). Blue dots correspond to attractors originating from the homoclinic orbit
to the saddle cycle located around the saddle fixed point x1 at the maximum of V2

(green line). Orange dots show the attractor originating from the fixed point x2 at
the minimum of V2, which is outside the range of x of this figure. One can clearly
see bistability for a ∈ [3.77, 3.85], which means that two attractors of different
origins coexist.

chaos in the inverse cascade of period-doubling bifurcations as a
decreases (blue line) and another born from x2 as a increases (orange
line).

III. EIGENVALUES OF THE FIXED POINTS

From Sec. II, it becomes apparent that in (2) with a smooth V
having minima and maxima, one should expect an interplay between
periodic solutions born from the minima and attractors born from
homoclinic bifurcations associated with the maxima directly or indi-
rectly. To predict the behavior of the solution near a minimum or

the one resulting from a homoclinic bifurcation related to a maxi-
mum, one needs to know the eigenvalues of the relevant fixed points.
In Sec. S-I of the supplementary material, we performed the linear
stability analysis of the fixed points of (2) and showed that their
eigenvalues λk can be expressed in terms of the Lambert function
W(z) with z ∈ R and W ∈ C as

λk =
Wk(Jτ )

τ
=

JWk(z)

z
, (6)

where J = f′(x∗) and x∗ is the fixed point. Function W(z) has count-
ably many branches, as illustrated in Fig. S2 of the supplementary

material, and Wk is its kth branch. Therefore,
λk
J

=
Wk(z)

z
=

Wk(Jτ )

(Jτ )
.

Figures 6 and 7 show eigenvalues of the fixed points at the landscape
minimum and maximum, respectively (compare with Fig. S2 in the
supplementary material).

Note that at a landscape minimum J < 0, so with τ ≥ 0,
z = Jτ ≤ 0. However, in Fig. 6, for convenience, we show
λk
|J|

=
Wk(−z̃)

z̃
as a function of z̃ = |J|τ ≥ 0. For |J|τ ∈

(
0, 1

e

)
, the lead-

ing eigenvalue λ1 (green line) is real and negative, whereas all other
eigenvalues are complex with large negative real parts [this is well
visible in Figs. 6(b) and 6(d)]. Therefore, the fixed point is effectively
a stable node, and the solution converges to it without oscillations.
At |J|τ ∈

[
1
e
, π

2

)
, there is a pair of complex-conjugate leading eigen-

values with negative real parts (red lines in Fig. 6); therefore, in
the center manifold of the Andronov–Hopf (AH) bifurcation that
occurs at |J|τ = π

2
, the fixed point is a stable focus and the solu-

tion converges to it in an oscillatory manner. The boundary between
these two subtly different types of behavior is τ = 1

e
, which is high-

lighted by a vertical green dashed line in Fig. 6, and the respective
values of real and imaginary parts of the eigenvalues are highlighted
by green filled circles.

In Sec. S-I of the supplementary material, we derive the first
condition for the first AH bifurcation of the fixed point x∗ at the

FIG. 6. (a) and (b) Real and (c) and (d) imaginary parts of the
eigenvalues λk , normalized by |J|, of a fixed point correspond-
ing to a minimum of the landscape V(z) in (2) as functions of
|J|τ . In (a) and (b), the leading eigenvalue λ1 (green line) is real
for |J|τ ∈ [0, 1

e
). At |J|τ > 1

e
, all eigenvalues are complex. At

|J|τ = π
2
, the real parts of a pair of leading eigenvalues (red

line) cross zero signifying the first Andronov–Hopf (AH) bifur-
cation marked as AH1 in (a). At |J|τ = 5π

2
, the second AH

bifurcation takes place, marked as AH2 in (a). Left and right
panels show the same functions in different ranges.
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FIG. 7. (a) Real and (b) imaginary parts of the eigenvalues λk , normalized by
J, of a fixed point corresponding to a maximum of V(z) in (2) as functions of Jτ .
The leading eigenvalue λ1 (orange line) is real for all τ . At Jτ ≈ 1.975, the saddle
quantity σ changes sign. At Jτ = 3π

2
, the first AH bifurcation takes place, marked

as AH1.

minimum of V [Eq. (S11) in the supplementary material],

τAH1 =
π

2|J|
, (7)

and verify the second condition [Eq. (S18) in the supplementary
material]. Equation (7) is consistent with the predictions for the
existence of a periodic solution in (3) for a special form of g(z) as dis-
cussed in Sec. II A. However, this result is more general and applies
to a smooth f of any shape. Thus, Eq. (7) allows one to determine the
value of τ at which it is possible for the stable cycle to be born from
the fixed point at the landscape minimum. The first AH bifurca-
tion, AH1, is highlighted by the vertical red dashed line in Fig. 6, and
the respective values of real and imaginary parts of the eigenvalues
are highlighted by red filled circles. At τAH2 = 5π

2|J|
, the second AH

bifurcation occurs, as a result of which a saddle cycle could be born
around the minimum. The second AH bifurcation, AH2, is high-
lighted with a vertical dashed cyan line in Fig. 6, and the respective
values of real and imaginary parts of the eigenvalues are highlighted
by yellow filled circles.

For a fixed point at the maximum of V, J > 0, and Fig. 7 shows
λk
J

=
Wk(Jτ )

Jτ
as a function of Jτ ≥ 0. One can see that, as also con-

firmed by the analysis in Sec. S-I of the supplementary material, at
any τ ≥ 0, there is one real positive eigenvalue λ1 (orange line);
therefore, this fixed point is always unstable for non-negative τ .
However, it is important to appreciate that for Jτ ∈

(
0, 3π

2

)
, this

point is a saddle-focus with a one-dimensional unstable manifold
and an infinite-dimensional (codimension-one) stable manifold. As

shown in (S19) of the supplementary material, at Jτ = 3π
2

, or at

τAH1 =
3π

2J
, (8)

the first AH bifurcation occurs, which is highlighted by a vertical
red dashed line in Fig. 7, and the respective values of eigenval-
ues are marked by red filled circles. For visualization purposes, for
Jτ ∈

(
0, 3π

2

)
, we can mentally replace the stable infinite-dimensional

manifold of the saddle-focus with a two-dimensional center mani-
fold of its first AH bifurcation. In this approximation, the given fixed
point would represent a saddle-focus with a one-dimensional unsta-
ble manifold and a two-dimensional stable manifold, as explained
in more detail in Sec. IV. If there is a well of V nearby, the stable
and unstable manifolds can form a homoclinic loop at some τ from
inside

(
0, 3π

2J

)
. With this, Shilnikov’s theorem for ODEs55,56 verified

for a special form of (3)50,52 predicts that for a safe loop with σ < 0
(see Sec. II B for the definition of σ and Shilnikov’s theorem), which
exists for Jτ ∈ [0, 1.975), the homoclinic loop breaks down to form a
stable periodic orbit. If the loop is dangerous with σ > 0, the resul-
tant regime should be chaotic at least in ODEs,55,56 although to the
best of our knowledge, this was not verified for DDEs.

Note that at τAH1, a saddle periodic orbit is born from the saddle
point at the maximum, which is an intersection of a stable and an
unstable manifold. At larger τ , the manifolds of this saddle orbit can
form a loop, whose breakdown can give birth to chaos, as discussed
in Sec. II C.

IV. DELAY-INDUCED BEHAVIOR IN SYSTEMS WITH
TWO-WELL POTENTIALS

A two-well landscape function V in (2) can be constructed by
gluing together segments of single-well landscapes considered in
Sec. II and smoothing out the joints. This observation leads us to
suggest that the phenomena discussed in Sec. II should also occur in
different parts of the phase space of (2) with a two-well V. However,
a two-well function has a different quality as compared to a single-
well one; therefore, it is reasonable to also expect new phenomena
not covered in Sec. II.

It follows from Sec. II that homoclinic bifurcations play a cen-
tral role in DDEs (3) with non-monotonic g(z) of even very simple
shapes and result in the disappearance of local attractors when g
becomes sufficiently steep. The nature of the homoclinic bifurca-
tions depends on the fine local features of g, but their occurrence
seems inevitable as the steepness parameter grows. For (2), an equiv-
alent of the steepness parameter is τ ; therefore, the homoclinic
bifurcations are expected to occur as τ grows.

In this section, we verify our prediction that homoclinic bifur-
cations should occur in systems (2) with two-well potentials V. We
reveal that the occurrence of the particular forms of such bifurca-
tions depends on the individual features of the potential wells and
a hump, such as the depth, width, and sharpness, as well as on the
relationships between them.

We illustrate our findings using two subtly different examples
of V, which lead to homoclinic bifurcations of different kinds. For
this purpose, we construct the functions V in such a way that by
adjusting parameters, we could control their local features. The first
example is considered in this section and the second one in Sec. S-II
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of the supplementary material. However, our additional studies with
the forms of V specified in Sec. S-III of the supplementary material,
which are not reported here due to the lack of space, suggest the
generality and reproducibility of the phenomena discovered for the
landscapes with the same qualitative features.

In relation to optimization, a particularly important phe-
nomenon at large delays is the disappearance of localized attractors
and the existence of the global chaos, which enables the phase tra-
jectory to spontaneously visit the neighborhoods of all local minima.
This effect is similar to the action of random noise on (1) within
simulated annealing38 and superficially might seem quite simple.
However, the mechanisms leading to global chaos are quite intricate
and involve considerable rearrangements of manifolds belonging to
saddle fixed points or to saddle cycles while the system undergoes a
chain of homoclinic bifurcations. It is thanks to these global bifur-
cations that the barriers separating the vicinities of local minima
disappear. Therefore, understanding reorganization of manifolds is
crucial for understanding why and how the delay could help in opti-
mization. In this section, we explain what happens to manifolds
by applying the knowledge about homoclinic bifurcations available
from the qualitative theory of ODEs and verify its predictions with
numerical simulations of (2).

A. Model

Here, we consider bifurcations in (2) with a double-well V and
the respective f = −V′ specified as follows:

V(x) = −
1

2
e−2(x−1)2 − e−0.5(x+3)2 + 0.01(x + 1)4 − 0.88,

(9)

f(x) = −2e−2(x−1)2(x − 1) − e−0.5(x+3)2(x + 3)

−0.04(x + 1)3.

The functions V(x), f(x), and J(x) = f′(x) are shown in Fig. 8(a) by
blue, red, and green lines, respectively. The constant (−0.88) was
added in V in order to make the graphs better distinguishable from
each other. The upper part of Table I summarizes the local features
of V in (9), including the positions of two minima xmin

1,2 and one max-
imum xmax, their depths Vmin

1,2 and Vmax, Jacobians Jmin
1,2 and Jmax, and

the points of the first AH bifurcations τAH1
1,2 and τAH1. In Fig. 8(a), red

circles indicate the positions of xmin
1,2 , which are stable fixed points of

(2) at τ = 0, and the green circle shows the fixed point at the land-
scape maximum xmax, which is unstable at τ = 0 and saddle at any
τ > 0.

In the context of optimization illustrated in Sec. V, we remark
that in this V, the minimum xmin

1 is the lowest of the two, and the
respective well is the broadest and has the flattest bottom.

B. Overview of bifurcations

The single control parameter in (2) and (9) is τ , and the bifur-
cation diagram is shown in Fig. 8(b). Specifically, vertical red lines
show the locations of fixed points xmin

1 and xmin
2 for the range of τ

inside which they remain stable. At τ = τAH1
1,2 where the lines stop

(values are given in Table I), AH bifurcations occur in agreement
with (7). The green vertical line shows xmax in the whole range of τ
considered.

FIG. 8. (a) Functions V(x) (blue line), f(x) (red line), and J(x) = f ′(x) (green
line) specified by (9). Red/green circles show positions of fixed points at the min-
ima/maximum of V . (b) Bifurcation diagram of (2) and (9). Local minima/maxima
of attractors are shown by black/red dots. Fixed points at the minima of V are
shown by red vertical lines for τ at which they are stable, and the saddle-focus
at the maximum of V is shown by a green vertical line. As τ varies, in this sys-
tem, only safe homoclinic loops are formed by the manifolds of the saddle-focus
fixed point xmax. (c) Demonstration of optimization. Local maxima (red dots) and
minima (black dots) of solutions to (2) and (9) are shown, which are obtained as
τ slowly decreases from 3.3 to zero. The solution spontaneously settles down at
the lowest, flattest, and broadest minimum xmin1 . Compare with (a) and (b).

For oscillatory attractors, red/black dots indicate local max-
ima/minima of x(t), which constitute the projections of the Poincaré
sections defined as ẋ = 0, ẍ < 0/ẍ > 0, respectively. Note that this
diagram is different from the classical bifurcation diagrams, such as
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TABLE I. Features of the minima and a maximum of the potential V specified by (9)
and the points of homoclinic bifurcations in (2) and (9) as τ grows. This table provides
the locations of the minima xmin1,2 and the maximum xmax, their depths Vmin

1,2 and Vmax,
Jacobians Jmin1,2 and Jmax, and the points of the first AH bifurcations τ AH1

1,2 and τ AH1.
For xmax, τ σ is the value of τ at which its saddle quantity switches from negative to
positive. All homoclinic bifurcations here are homoclinic loops of the saddle-focus fixed
point at xmax, which are safe since all values of τJmax are below 1.975. All numerical
values in the table are given approximately.

Features of the potential V in (9)

xmin
1 = −2.771 68 xmin

2 = 0.864 388 xmax = −0.308 654
Vmin

1 = −1.7557 Vmin
2 = −1.2417 Vmax = −0.9207

Jmin
1 = −1.300 15 Jmin

2 = −2.195 11 Jmax = 0.490 368
τAH1

1 = 1.208 τAH1
2 = 0.7155 τAH1 = 9.61

flattest, broadest, lowest τ σ = 4.0276

Homoclinic bifurcation points in (2) and (9)

1st homoclinic (safe small loop of xmax): τ = 1.53, τ Jmax = 0.75
2nd homoclinic (safe large loop of xmax): τ = 2.4307, τ Jmax = 1.19
3rd homoclinic (safe small loop of xmax): τ = 2.4499, τ Jmax = 1.201

the one in Fig. 5, which usually show only one kind of the attrac-
tor extrema. We show both kinds of the extrema because we need
to illustrate how the sizes of the limit cycles born from AH bifurca-
tions grow with τ and how the attractors approach the saddle point
xmax. This representation allows us to register homoclinic bifurca-
tions from the abrupt changes in the locations and/or amplitudes of
the numerically found attractors under very small changes in τ .

Altogether, there are three homoclinic bifurcations, as indi-
cated in Fig. 8(b) and in Table I. Whereas the 1st homoclinic
bifurcation can be easily detected from Fig. 8(b), the details of the
2nd and 3rd ones are hard to see in this scale. To demonstrate these
convincingly, an enlarged segment of the bifurcation diagram in the
relevant area is provided in Fig. 9.

Below, we will state our predictions about the details of delay-
induced homoclinic bifurcations, which can be made on the basis
of rigorous results overviewed in Secs. II C and III. These will
be verified and illustrated with phase portraits in Fig. 10, which
complement the bifurcation diagram in Fig. 8(b).

The point xmax is of a saddle-focus type for τ > 0. Within the
range of τ shown in Fig. 8(b), it has a single real positive eigen-
value λ1 corresponding to a one-dimensional unstable manifold and
countably many complex-conjugate eigenvalues with negative real
parts corresponding to a stable manifold of codimension one. In
other words, xmax does not undergo an AH bifurcation and does not
give birth to a saddle cycle. Therefore, we should not be expecting
the situation described in Sec. II C, and all homoclinic bifurcations
here must consist of the closure of the manifolds of xmax itself to form
a one-dimensional loop, following the scenario of Sec. II B.

Based on Sec. II B, we can predict that the formation from the
loop of a new attractor, which would be localized near xmin

1,2 , would
occur as τ passes the bifurcation point from above to below, i.e.,
decreases. If we consider the sequence of events as τ is increased,
then the localized attractor existing at τ below the bifurcation point
would approach xmax, collide with it while the manifolds close at the
bifurcation, and cease to exist for τ above the bifurcation.

The predicted scenario is confirmed for the 1st and
3rd homoclinic bifurcations illustrated with phase portraits in
Figs. 10(a)–10(d) and 10(i)–10(l), respectively. As a result of these
bifurcations, the localized attractors disappear one after another.
However, the 2nd homoclinic bifurcation does not follow from
Sec. II B and is of a different type. Specifically, as τ grows, this bifur-
cation produces a large limit cycle embracing all fixed points [see
Figs. 10(e)–10(h)].

Figures 9(a) and 9(b) show that in a small range τ ∈ [2.4307,
2.4499], i.e., between the 2nd and 3rd homoclinics, the system
demonstrates bistability as the large cycle coexists with the smaller
one around xmin

1 until the latter disappears via the 3rd homoclinic.
There is also a hysteresis meaning that by slowly and continu-
ously increasing and decreasing τ , one observes different attractors.

FIG. 9. (a) Segment of the bifurcation diagram in Fig. 8(b) illustrating 2nd and 3rd homoclinic bifurcations, bistability, and hysteresis in (2) and (9). Circles show all maxima
of the attractors (limit cycles): as τ increases (blue filled) and as τ decreases (orange empty). The vertical green line shows xmax. (b) The largest maxima of the attractors is
shown to demonstrate hysteresis more clearly: as τ increases (blue filled) and as τ decreases (orange empty). A hysteresis loop is marked by green arrows. The relevant
small and large cycles are shown in Fig. 10(h) by red and turquoise lines, respectively.
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FIG. 10. Phase portraits of (2) and (9) illustrating bifurcation diagrams in Figs. 8 and 9 with τ given in panels. Notations are fixed points xmin1,2 (red circles) and xmax (green

circle), filled/empty circles indicate points below/above AH bifurcations; attractors (red and turquoise lines), and homoclinic loops (magenta line). 1st row: (a) Before, (b) and
(c) at, and (d) after the 1st homoclinic bifurcation. Small cycle around xmin2 [turquoise line in (a)] collides with xmax to form a homoclinic loop [magenta line in (b) and (c)] around

xmin2 and disappears (d). 2nd row: (e) Before, (f) and (g) at, and (h) after the 2nd homoclinic bifurcation. (e) Small cycle around xmin1 is the only attractor, (f) and (g) homoclinic

loop of xmax, (h) large cycle born from a homoclinic loop (turquoise line) coexisting with a small cycle around xmin1 (red line). 3rd row: (i) Before, (j) and (k) at, and (l) after the

3rd homoclinic bifurcation. (i) Large (red line) and small (turquoise line) cycles coexist, (j) and (k) cycle around xmin1 collides with xmax and forms a homoclinic loop, and (l) large
cycle is the only attractor. 4th row: (m) period-2 cycle, (n) period-4 cycle, (o) chaos embracing all fixed points at large τ , and (p) trajectory goes to infinity at even larger τ .
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Specifically, Fig. 9(a) shows all local maxima of an attractor as τ
increases (blue filled circles) and as τ decreases (orange empty cir-
cles). The lack of the full coincidence between the blue and orange
circles is an evidence of hysteresis. Also, a hysteresis loop is shown by
green arrows in (b) where only the largest maxima of the attractors
are given for clarity.

To predict whether the attractors colliding with xmax at homo-
clinic bifurcations are limit cycles or chaotic attractors, we need to
establish whether the respective loops are safe or dangerous, respec-
tively, based on the sign of the saddle quantity σ , as explained in
Secs. II B and III. Specifically, as mentioned in Sec. III, for DDEs,
the quantity σ is negative and the loop is safe when τ Jmax < 1.975,
implying the collision with a stable limit cycle. For all three homo-
clinic bifurcations, Table I gives the values of τ together with τ Jmax,
the latter being smaller than 1.975. Therefore, we expect safe loops
in all three homoclinic bifurcations.

Phase portraits in Figs. 10(a)–10(l) comply with this prediction
and show limit cycles being destroyed by [(a)–(d) and (i)–(l)], or
born from [(e)–(h)], the homoclinic bifurcations as τ increases.

C. Role of manifolds in homoclinic bifurcations

The key components of homoclinic bifurcations are invariant
manifolds, and it is their reconfiguration that induces most drastic
changes in the observed system behavior associated with the death or
birth of attractors. Here, at τ > 0, different basins of attraction are
separated by the stable manifolds of the saddle-focus xmax. There-
fore, in the context of optimization, these stable manifolds form the
barriers between the vicinities of the local minima of V. Therefore,
to understand if and how local attractors in (2) and (9) can disap-
pear as τ grows, one needs to understand how these manifolds are
reconfigured.

Whereas the attractors of nonlinear DDEs can be detected
numerically with relative ease, revealing and plotting manifolds
of such systems is a challenge. Some methods to visualize two-
dimensional manifolds in nonlinear ODEs have been introduced in
Refs. 60 and 61 and unstable manifolds in DDEs in Refs. 29 and 62.
However, the phase space of a DDE is infinite-dimensional, imply-
ing that the stable manifold of xmax has dimension infinity and is
thus highly challenging to detect and to depict. Moreover, revealing
a stable manifold in an ODE would require reversing time, which is
generally not possible in DDEs.63 With this, to the best of our knowl-
edge, there are no techniques available to date to numerically obtain
stable manifolds of DDEs.

While being unable to reveal by direct numerical visualizations
how the manifolds reorganize in DDEs, we can still explain this at a
qualitative level by extending the results from the qualitative theory
of ODEs,21 which are supported by numerical visualizations of such
reorganizations during homoclinic bifurcations of a saddle-node64

and a saddle-focus65 in a three-dimensional system of ODEs. Our
explanations and predictions are illustrated with Figs. 11–13, which
can be compared with the phase portraits in Fig. 10. Although the
phase portraits can supply only a highly limited information, their
agreement with the predicted effects would provide a reasonably
acceptable level of verification for these.

The manifolds of a saddle-focus near a homoclinic loop are
quite intricate in shape. To make our explanation clearer, we start

from considering some fictional two- and three-dimensional sys-
tems, which we assume to demonstrate similar homoclinic bifurca-
tions occurring to a saddle-node, whose manifolds are simpler than
those of a saddle-focus [see Figs. 11(a)–11(j) and 12].

Next, in order to schematically illustrate homoclinic bifurca-
tions in a DDE, we will proceed by analogy with a center manifold
reduction in ODEs.66 Specifically, we will assume that the dynam-
ics on the infinite-dimensional (codimension-one) stable manifold
of the saddle-focus xmax of (2) and (9) can be approximated by
the dynamics on the two-dimensional manifold associated with the
leading pair of complex-conjugate eigenvalues of this point. Thus,
we will explain reorganization of manifolds of a saddle-focus in (2)
and (9) by sketching manifolds, fixed points, limit cycles, and homo-
clinic loops in a three-dimensional phase space in Figs. 11(k)–11(o)
and Fig. 13.

D. First homoclinic bifurcation

In Fig. 11, panels (a)–(e) show snapshots of manifolds, fixed
points, and limit cycles at consecutive values of a certain control
parameter of a fictional two-dimensional system undergoing the
simplest orientable homoclinic bifurcation, which is roughly similar
to the 1st homoclinic bifurcation in (2) and (9). Here, the saddle-
node (green circle) is an equivalent of xmax. Dashed lines show
manifolds affected by the homoclinic bifurcation, and solid lines
show manifolds unaffected by it. Other notations are given in the
figure caption.

An equivalent sequence of events in a three-dimensional sys-
tem is illustrated in Figs. 11(f)–11(j). The only difference from
Figs. 11(a)–11(e) is that the stable manifold of the saddle-node is
two-dimensional here. Depiction of all manifolds in a 3D space helps
to make a transition from a homoclinic loop of a saddle-node to
that of a saddle-focus because the latter can exist only in spaces of
dimension three and higher.

Next, Figs. 11(k)–11(o) schematically illustrate manifolds of the
saddle-focus and other objects in the phase space of (2) and (9):
(k)–(m) before, (n) at, and (o) after the 1st homoclinic bifurcation.
The notations are specified in the figure caption.

The saddle-focus [green filled circle in Figs. 11(k)–11(o)] is an
intersection of the two-dimensional stable manifold (cyan surface,
a segment is shown) and the one-dimensional unstable manifold
(blue line) associated with the only real and positive eigenvalue of
this point. The stable manifold is the boundary between the attractor
basins of two attractors (red filled circles or red lines).

Below, we compare Figs. 11(k)–11(o) with the bifurcation dia-
gram in Fig. 8(b) and with the phase portraits in Figs. 10(a)–10(d).
As τ grows from zero, the following events precede the 1st homo-
clinic bifurcation. At τ ∈ [0, 0.7155], there are two coexisting stable
fixed points [Fig. 11(k)] at xmin

1 /xmin
2 below/above the stable manifold

of xmax [compare with Fig. 8(b)].
At τ ≈ 0.7155, xmin

2 undergoes AH bifurcations, and the sta-
ble cycle is born from it. The situation just above this bifurcation
is illustrated in Fig. 11(l), where the red line above the stable man-
ifold shows a newly born cycle. At τ ≈ 1.208, xmin

1 undergoes AH
bifurcations, and the stable cycle is born from it, which for a slightly
larger τ is given by the red line below the cyan surface in Fig. 11(m)
[compare with Fig. 10(a)]. With this, the first limit cycle [upper red
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FIG. 11. Schematic illustration of the 1st homoclinic bifurcation in (2) and (9) eliminating the first localized attractor. (a)–(j) Illustrations of a homoclinic bifurcation of a
saddle-node in some fictional systems of dimensions (a)–(e) two and (f)–(j) three as some control parameter monotonously changes from (a) to (e) and from (f) to (j),
respectively. (k)–(o) Illustration of a homoclinic bifurcation of a saddle-focus xmax in (2) and (9), as the value of τ increases from (k) to (o). Filled red circles show stable fixed
points, and empty red circles show fixed points above AH bifurcations, a green filled circle shows (a)–(j) a saddle-node and (k)–(o) a saddle-focus, and red lines show stable
cycles. In (d), (i), and (n), the magenta line shows the homoclinic loop. In (a)–(e), yellow and white shades show basins of attraction of two different attractors, and dashed
lines in (b), (c), and (e) show manifolds involved in homoclinic bifurcations. Cyan/blue lines show stable/unstable manifolds of the saddle-node. In (f)–(o), cyan surfaces show
stable manifolds and blue lines unstable manifolds of the relevant saddle point. In (f)–(j), a green line with double arrows is a strong stable manifold of the saddle-node, which
is contained in its stable 2D manifold, and green lines with single arrows are trajectories on the stable 2D manifold, which approach the saddle point along its eigenvector
corresponding to the larger of two negative eigenvalues.

line in 11(m) and turquoise in 10(a)] has grown in size and stretched
toward the saddle focus.

At τ ≈ 1.53, the 1st homoclinic bifurcation occurs; specifically,
the limit cycle around xmin

2 collides with xmax, and the unstable man-
ifold of the latter “sticks” to its own stable manifold and forms a
homoclinic loop [magenta lines in Fig. 11(n) and in Figs. 10(b)
and 10(c)]. This bifurcation is identical to the one illustrated in Fig. 3
as one goes from (f) to (d).

As τ increases slightly beyond the value of the 1st homoclinic of
1.53, the local attractor on the right side of xmax, i.e., near xmin

2 , ceases
to exist. The system has a single attractor left, which is the limit cycle
localized near xmin

1 [compare red lines in Figs. 10(d) and 11(o)]. If at
τ just above 1.53 the initial conditions are set on or near the just
disappeared local attractor around xmin

2 , the phase trajectory swiftly
leaves this region and converges to the limit cycle around xmin

1 in
what might feel like a “jump” as indicated in Fig. 8(b).

Unlike in the homoclinic bifurcation of a saddle-node illus-
trated in Figs. 11(a)–11(j), the shape of the stable manifold of the
saddle-focus is quite intricate. Specifically, close to the homoclinic

bifurcation, part of the stable manifold of xmax returns to the vicin-
ity of xmax from above and takes the shape of an open helicoid with
a finite number of turns [see the upper part of Figs. 11(k)–11(m)],
with turns coming closer to each other as they come closer to
the saddle-focus, as numerically demonstrated for a 3-dimensional
dynamical system in Ref. 65.

At the instant of homoclinic bifurcation (n), the helicoid
becomes closed and develops an infinite number of turns such that
the distance between the consecutive turns becomes smaller as the
turns come closer to xmax. At the same instant, the unstable manifold
“sticks” to this closed helicoid and forms a loop (n). After the homo-
clinic bifurcation, the helicoid opens and possesses a finite number
of turns again (o). As a result of homoclinic bifurcations, the one-
dimensional unstable manifold (blue line) “permeates” through the
stable one (cyan surface), and the latter no longer separates basins of
attraction. A more detailed discussion of the attractor basins is given
in Sec. IV E.

Figures 11(k)–11(o) schematically show only a small portion of
the stable manifold near the homoclinic loop. However, in reality,
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FIG. 12. Schematic illustration of homoclinic bifurcations in some fictional (a)–(e) two-dimensional and (f)–(j) three-dimensional systems, respectively, with a saddle-node,
which are similar to the 2nd and 3rd homoclinic bifurcations of the saddle-focus in (2) and (9) with safe loops forming as τ is increased from 2.425 to 2.46 as shown in Fig. 9.
Notations are as in Fig. 11, and in addition in (b)–(e), the brown line shows a typical phase trajectory. Away from the saddle-node, the stable manifold (cyan line or surface)
behaves in the same manner qualitatively as with a saddle-focus [compare (f) and (g) with Fig. 13]. In (b) and (g), the 2nd homoclinic bifurcation is illustrated, in which a large
safe loop (magenta line) is formed by the manifolds of the saddle-node [compare with Figs. 10(f) and 13(d)]. This bifurcation leads to the birth of a large limit cycle [larger red
closed curve in (c) and (h), compare with turquoise curve in Fig. 10(h)]. In (d) and (i), the 3rd homoclinic bifurcation is illustrated, in which a small safe loop (magenta line) is
formed by the manifolds of the saddle-node [compare with Fig. 10(j)]. This bifurcation leads to the disappearance of the small limit cycle and leaves only one attractor being
the large limit cycle [red line in (e) and (j), compare with Fig. 10(l)].

this manifold has an even more complex shape; e.g., in (o), a part of
this manifold should unwind from the vicinity of the unstable fixed
point (empty circle in the upper part), but we cannot show this with-
out overloading the figure. Also, this manifold extends well beyond
the boundaries shown and has a similarly complex structure in the
lower parts of panels in Figs. 11(k)–11(o), which we again do not
show for the sake of clarity. Thus, the complexity of the shape of the
stable manifold of the saddle-focus prevents us from illustrating this
bifurcation in full.

With this, reorganization of the manifolds away from the
homoclinic loop during this bifurcation would be qualitatively
the same if the saddle-focus is replaced by a saddle node whose
manifolds have a simpler shape and are easier to depict [see
Figs. 11(f)–11(j)].

E. Basins of attraction

In the context of optimization, our main interest is how homo-
clinic bifurcations amend the basins of attraction and lead to their
merging. For a fictional two-dimensional system, Figs. 11(a)–11(e)
show the basins of two coexisting attractors by different shades.
Depiction of the basins is easy on the plane but difficult in higher-
dimensional spaces; therefore, this figure can be used for a visual
reference. Here, the yellow shade shows the basin of an attractor at
or near an equivalent of xmin

2 (upper right part of the panel), whereas
the basin of attractor at or near xmin

1 (lower left part of the panel) is
not shaded.

By analogy with similar situations in ODEs, one can hypoth-
esize that the stable manifold should make several turns around
the three fixed points, thus making both basins of attraction stripy.
Although we cannot verify this hypothesis by building stable man-
ifolds of the DDE, we can numerically find the basins themselves
and reveal the stable manifolds as their boundaries, as was done in
Ref. 67 for a four-dimensional system.

The basin of attraction in (2) is a set of all initial functions ϕ(t),
t ∈ [−τ , 0], such that all solutions starting from these functions con-
verge to the given attractor. It is a subset of an infinite-dimensional
phase space and difficult to visualize in full. However, we utilize an
approach of Refs. 68 and 69 and consider only a subset of all possible
initial conditions, namely, functions of a certain class parameter-
ized by a finite number of parameters. In our case, we choose
the simplest class of constant initial functions, ϕ(t) = x = const,
t ∈ [−τ , 0]. Such functions can be directly compared with the posi-
tions of fixed points in (2).

Importantly, numerical simulations of (2) and (9), as well as of
(2) with several similar potentials, including those specified in Secs.
S-II and S-III of the supplementary material, revealed that at posi-
tive τ from some initial conditions, such systems systematically go
to infinity. Thus, infinity represents an additional attractor with its
own basin and boundaries, which could be revealed numerically.

The basins of attraction of (2) and (9) are given in Fig. 14 for
a range of τ in the vicinity of the 1st homoclinic bifurcation. The
striking feature of this plot is the large basin of attraction of infinity
(blue shade), which expands with growing τ . Below the bifurca-
tion point τ = 1.53, in addition to infinity, there are two attractors
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FIG. 13. Schematic illustration of the 2nd homoclinic bifurcation in (2) and (9) at τ ≈ 2.4307, which creates a large safe homoclinic loop of xmax subsequently giving birth
to a large attractor embracing all fixed points. (a) and (b) Before the bifurcation [compare with Figs. 10(e), 12(a), and 12(f)] and (c) and (d) at the bifurcation [compare with
Figs. 10(f), 12(b), and 12(g)]. The cyan surface shows a stable manifold and the blue line shows an unstable manifold of the saddle-focus at xmax (green filled circle). Unstable
fixed points at xmin1,2 are shown by empty red circles, and the limit cycle around xmin1 is shown by a red line in the lower parts of the panels. A spiraling cyan surface in the
upper part of each panel shows a portion of the stable manifold (a) and (c) not participating in the homoclinic bifurcation and (b) and (d) participating in the bifurcation. The
homoclinic loop lies on the portion of the stable manifold shown in (d), which at the bifurcation point and close to xmax has a shape of a closed helicoid with an infinite number
of turns.

on different sides of xmax, and on the plot, we do not distinguish
between fixed points and limit cycles. Due to the 1st homoclinic
bifurcation at τ ≈ 1.53, the basin of attractor at or near xmin

2 (red
shade) collapses, and at 1.53 < τ < 2.43 besides the infinity, there is
only one attractor at or near xmin

1 (green shade).
Figure 14 reveals that the basins of attraction at least before

the 1st homoclinic bifurcation are stripy and, therefore, confirms
the hypothesis that the stable manifold of xmax makes several turns
around the three fixed points [compare with Figs. 11(b) and 11(c)].

F. Second homoclinic bifurcation

As mentioned in Sec. IV B, the 2nd homoclinic bifurcation can-
not be predicted based on the theorems overviewed in Sec. II B.
The numerical simulations suggest that it consists of forming a

large homoclinic loop embracing all fixed points [magenta line in
Fig. 10(f)] and results in the birth of a large limit cycle [turquoise
line in Fig. 10(h)].

The formation of a large homoclinic loop involves a differ-
ent pair of manifolds of the saddle-focus xmax, as compared to
those forming the 1st small loop. As before, given the difficulty of
making clear and easily interpretable sketches of intricately shaped
manifolds of a saddle-focus, we initially illustrate the respective
homoclinic loop in a two- [Figs. 12(a)–12(c)] and three-dimensional
[Fig. 12(f)–12(h)] fictional systems with saddle-nodes. Notations are
the same as in Fig. 11, and in addition, brown lines in (b)–(e) show
typical phase trajectories.

Figures 12(a)–12(c) explain how the basin of a newly born
attractor (large cycle) is formed thanks to the rearrangement of
manifolds. Specifically, in (a), the yellow shade shows the basin of
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FIG. 14. Basins of attraction of (2) and (9) with safe homoclinic loops as a function
of τ . Different shades mark points x such that, from initial conditions ϕ(t) = x,
t ∈ [−τ , 0], the phase trajectory converges to the following attractors: infinity
(blue), fixed point at, or limit cycle around, xmin1 (green), fixed point at, or limit cycle

around, xmin2 (red). Above the 1st homoclinic bifurcation point τ = 1.53, there is

no local attractor at or near xmin2 . Compare the stripy structure of the basins below
τ = 1.53 here and in Figs. 11(a)–11(c).

the only attractor available just before the bifurcation, i.e., of the
limit cycle around an equivalent of xmin

1 [red line, compare with
Figs. 10(d) and 10(e)]. At the 2nd homoclinic bifurcation in (b), this
basin becomes bounded. After the bifurcation in (c), the manifolds
are rearranged to form the boundary of the new basin (non-shaded)
of the large limit cycle born from the homoclinic loop (large red
closed curve).

Figures 12(f)–12(h) demonstrate the same sequence of events,
only in a three-dimensional system with a two-dimensional stable
manifold of the saddle-node. This illustration is an intermediate
stage before depicting manifolds of a saddle-focus in the three-
dimensional space while they undergo a similar reorganization.

The respective manifolds of a saddle-focus of (2) and (9), in the
center manifold reduction and in the vicinity of the large homoclinic
loop, are sketched in Fig. 13. Panels (a) and (b) illustrate the situation
just before the 2nd (large) homoclinic loop is formed [compare with
Fig. 12(f)], and (c) and (d) illustrate the instant of this large loop
formation [compare with Fig. 12(g)].

The picture of the manifolds here is even more complex than
near the small homoclinic loop sketched in Fig. 11(n) because of
the spiraling of the stable manifold as it approaches the saddle focus
from both sides. However, away from the saddle focus, the stable
manifold is qualitatively similar to the one of a saddle-node.

Before the homoclinic loop, the stable manifold, whose differ-
ent segments are shown by cyan surfaces in panels (a) and (b) of
Fig. 13, wraps itself around all the three fixed points more than once,
thus making more than one layer similarly to the manifold shown in
Fig. 12(a) by a dashed cyan line.

As a result, the one-dimensional unstable manifold of the
saddle-focus [blue line in Figs. 13(a) and 13(b)] goes between the two
layers of the stable manifold upward from xmax and then toward the
local attractor near xmin

1 (red line in the lower left parts of the pan-
els), just like in Figs. 12(a) and 12(f). At the instant of the homoclinic
bifurcation at τ ≈ 2.4307, a segment of the stable manifold collides
with the saddle-focus and captures the unstable manifold, which
now forms a large safe homoclinic loop [magenta line in Fig. 13(d),
compare with Figs. 10(f) and 10(g) and 12(b) and 12(g)]. Note that at
the instant of bifurcation, the helicoid-shaped portion of the stable

manifold containing the homoclinic loop [upper part of Fig. 13(d)]
makes an infinite number of turns as it approaches the saddle focus.

As τ grows, the loop disappears and gives birth to a large limit
cycle embracing all three fixed points, which are similar to large red
closed curves in Figs. 12(c) and 12(h). The respective large cycle of
(2) and (9) is given by a turquoise line in Fig. 10(h).

G. Third homoclinic bifurcation, chaos, and infinity

The 3rd homoclinic bifurcation takes place at τ = 2.4499 [see
Fig. 8(b)] and eliminates the small limit cycle to the left of xmax, i.e.,
around xmin

1 , as illustrated with phase portraits in Figs. 10(i)–10(l)
and with sketches of a similar bifurcation in systems with a saddle-
node in Figs. 12(c)–12(e) and 12(h)–12(j). This bifurcation is quali-
tatively the same as the 1st homoclinic. At τ > 2.4499, there are no
more local attractors in the system.

At τ ∈ (2.4499, 3, 33], the system has a single large attractor
enclosing all fixed points. This attractor is initially a limit cycle of
period one [Fig. 10(l)], but with increasing τ , it undergoes a cas-
cade of period-doubling bifurcations [Figs. 10(m) and 10(n)] and
becomes chaotic [Fig. 10(o)]. Note that the phase trajectory on the
chaotic attractor visits the close vicinities of all three fixed points,
which is roughly similar to the effect caused by adding large random
noise to (1) in simulated annealing.

As τ exceeds 3.33, the chaotic attractor disappears and the tra-
jectory goes to infinity [Fig. 10(p)]. We cannot specify the exact
reason for this and can only hypothesize that the manifold bound-
ing the basin of attraction of chaos appears involved in some global
bifurcation. Since we cannot visualize this manifold, we cannot ver-
ify our hypothesis. However, our studies of a considerable number of
systems of the form (2) with various multi-well landscapes V suggest
the universality of this phenomenon.

Specifically, it seems that in such systems, as τ becomes suffi-
ciently large, a chaotic attractor enclosing all extrema of V is initially
born (although it might turn into a periodic one at even larger τ ,
e.g., when periodic windows in chaos appear70). However, when τ is
increased further, the large attractor is inevitably destroyed, and the
trajectory escapes to infinity from all initial conditions.

It is important to appreciate that the infinity is present as some
kind of an attractor at all values of τ > 0. To make more spe-
cific predictions about encountering attractors at infinity, a rigorous
investigation of the necessary and sufficient conditions for the exis-
tence of unbounded solutions in nonlinear systems of type (2) would
be required.

H. Different forms of homoclinics

We also studied the phenomena induced by the increase of τ in
a slightly different system of the form (2) with a double-well land-
scape V(x) specified by Eq. (S21) in the supplementary material, in
which at the instants of homoclinic bifurcations, the saddle focus
was below AH bifurcations but had a positive saddle quantity.
According to Shilnikov’s theorem for ODEs,55,56 in such cases, the
homoclinic loops are expected to be dangerous, and their break-
down should lead to the formation of chaotic attractors. However,
to the best of our knowledge, this result has not been verified for
DDEs. Our numerical studies did not reveal any obvious differences
between the sequence of bifurcations in the systems of the form (2)
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with double-well landscapes V with dangerous or safe homoclinic
loops, and the observed phenomena looked very similar when stud-
ied with the same numerical accuracy. Thus, whether the dangerous
homoclinic loop gave birth to chaos or not, it did not affect the order
of bifurcations, and the same key phenomena were observed.

In addition, Sec. S-II in the supplementary material presents a
similar, albeit briefer, analysis of bifurcations in (2) with a two-well
potential V for which at the instant of the 1st homoclinic bifurcation,
the fixed point xmax is past AH bifurcations. There, the homoclinic
orbit is formed by the manifolds of the saddle cycle born from xmax,
which become tangent to each other, as described in Sec. II C. Nev-
ertheless, the general sequence of bifurcations there is very similar
to the one in (2) and (9).

V. RELEVANCE TO OPTIMIZATION

In the context of optimization, the delay-induced bifurcations
in (2) inform us about the mechanisms behind the removal of the
barriers between the local minima of the two-well potential func-
tion, which could be potentially applicable to multi-well landscapes
as well. Indeed, in the DDE (2), the barriers between the local min-
ima of V are formed by the stable codimension-one manifolds of
the saddle fixed point at the maximum of V or of the saddle cycle
born from this point. These manifolds are the boundaries of the
basins of attractors localized near the minima of V. Delay-induced
homoclinic bifurcations do not make these fixed points of manifolds
disappear but rearrange manifolds in such a way that they cease to
separate different basins and hence to be the barriers.

The absence of barriers between the local minima and the birth
of the large chaotic attractor enables the phase trajectory to visit the
vicinities of all minima. Thus, the delay acts by a rough analogy with
the random noise in a famous optimization technique of simulated
annealing.38

One possible optimization procedure using the delay τ as a
control parameter is illustrated in Fig. 8(c). To obtain this figure,
Eqs. (2) and (9) were solved as τ was decreased from some positive
value to zero. Specifically, at t = 0, the system was launched from
initial conditions belonging to the large chaotic attractor at τ = 3.3.
Then, τ was monotonously decreased in a step-wise manner from
3.3 to zero with small steps of the size 0.01. The duration of each step
was 50 time units, during which the phase trajectory approached the
attractor closest to the last state from the previous step. The decrease
of τ was almost adiabatic.

With this procedure, at τ = 0, the system ended up at the min-
imum xmin

1 , at which the modulus of the Jacobian, |J|, is smaller than
at xmin

2 [see Fig. 8(a)] and which, therefore, undergoes AH bifurca-
tions at a larger value of τ [see Fig. 8(b)]. This minimum xmin

1 is
not only flatter than xmin

2 , but also broader due to which the local
attractor around xmin

1 survives for larger values of τ than the one
around xmin

2 .
Under the adiabatic decrease of τ within approximately

[1.53, 3.3], i.e., above the 1st homoclinic, at every instantaneous
value of τ , the solution is close to the only attractor corresponding
to this value of τ . The latter is either the one embracing two minima
at larger τ or the one localized near, or at, xmin

1 at smaller τ . When
τ decreases below the 1st homoclinic at τ ≈ 1.53, the local attractor
around xmin

2 appears. However, the solution is not affected by this

event and remains in the vicinity of xmin
1 until τ reaches zero. Since

in this example xmin
1 happens to be the lowest minimum, an adiabatic

decrease of τ has demonstrated optimization as required.
In Sec. S-II B of the supplementary material, optimization with

an adiabatic decrease of τ is demonstrated for a subtly different
example of a system with a two-well potential, in which all homo-
clinic bifurcations take a different form as compared to the ones in
(2) and (9). To summarize, an adiabatic decrease of τ delivers the
flattest and broadest minimum of the two.

It is clear that in a general two-well potential, such a minimum
would not necessarily be the lowest one, and an adiabatic decrease
of τ would not result in optimization. To overcome this issue and to
reduce the dependence on the shape of the potential, we can use the
fact that larger delay induces chaotic, i.e., random-looking, behav-
ior forcing the phase trajectory to visit the vicinities of all minima.
Then, at some sufficiently large value of τ , at some randomly chosen
time t, the system can be found in one of these vicinities. If at this
moment τ starts to decrease relatively fast, i.e., in a non-adiabatic
manner, the phase trajectory would fail to approach any attractor
existing at any fixed value of τ . This way, at τ = 0, the system could
end up in the same well it was before τ started to decrease, and to
whose bottom, it would then converge following standard gradient
descent (1). Several repetitions of the same experiment with τ being
increased from, and then decreased to, zero would eventually reveal
all available minima whose depths could be compared at the end,
and the lowest one would be identified.

To illustrate this effect, consider (2) with a double-well V and
the respective f = −V′ specified as follows:

V(x) = −2e−2(x−1)2 − e−0.5(x+3)2 + 0.01(x + 1)4,
(10)

f(x) = −8e−2(x−1)2(x − 1) − e−0.5(x+3)2(x + 3)

−0.04(x + 1)3.

The functions V(x), f(x), and J(x) = f′(x) are shown in Fig. 15(a)
by blue, red, and green lines, respectively. Red/green circles indicate
the positions of the fixed points at the potential minima/maximum.
Here, the flattest and broadest minimum is xmin

1 , but the lowest
minimum is xmin

2 .
First, we launch this system at t = 0 from the initial conditions

x(t) = 2 for t ∈ [−2.1, 0] and τ = 2.1 and start to find the numerical
solution x(t) while decreasing τ at a relatively low rate. Specifically,
after 0.1 time units, τ is abruptly decreased to 2.0 and kept at this
value for another 0.1 time units while the system is being solved. The
process continues while τ is being decreased in a step-wise man-
ner to zero in steps of 0.1. The resultant solution x(t) is given in
Fig. 15(b) by black symbols and demonstrates that with this rela-
tively slow decrease of τ , the system ends up near the flattest and
broadest minimum xmin

1 .
Next, we repeat the process of decreasing τ step-wise but make

the duration of every step ten times smaller than above, i.e., 0.01. The
resultant solution is shown in Fig. 15(b) by red symbols and demon-
strates that the system ends up in the well of the lowest minimum
xmin

2 . In Fig. 15(c), the same solutions are shown as in (b) but now
against the current value of τ for the convenience of comparison.
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FIG. 15. Illustration of optimization by decreasing the delay in system (2) and (10) where the lowest minimum of V at xmin2 is not the flattest or the broadest. Such lowest
minimum can be delivered with a fast decrease of τ . (a) Functions V(x) (blue line), f(x) (red line), and J(x) = f ′(x) (green line) specified by (10). Red/green circles show
positions of fixed points at the minima/maximum of V . (b) Solutions x(t) launched from x(t) = 2 for t ∈ [−2.1, 0] for τ decreasing in a step-wise manner from 2.1 to zero in
steps of 0.1 of various duration: a slower decrease with step 0.1 (black points) and a faster decrease with step 0.01 (red points). (c) Points belonging to solutions x(t) shown
against the current value of τ , while it decreases as described in (b). Notations are as in (b).

Thus, the fast decrease of τ delivers the lowest minimum, which is
not the broadest or the flattest.

VI. DISCUSSION AND CONCLUSION

The fact of the occurrence of homoclinic bifurcations induced
by the increase of delay in (2) with a multi-well potential V could be
predicted based on the theorems overviewed in Sec. II. However, the
specific forms of these bifurcations, their dependence on the features
of V, and their ordering do not follow from these theorems.

For a general nonlinear DDE with an arbitrary nonlinearity and
an arbitrary dependence on delay, it is usually impossible to predict
the delay-induced changes in the behavior before actually observing
this behavior using numerical analysis. However, we hypothesized
and verified that for a special class of scalar nonlinear models (2),
in which the right-hand side depends only on the delayed variable
and represents the negative of the gradient of a two-well potential, it
is possible to make some qualitative predictions of the phenomena
induced by the increase of the delay.

Specifically, we tested and confirmed our initial hypothesis that
the increase of the delay τ should lead to a chain of homoclinic
bifurcations, leading to the disappearance of attractors localized
around the minima of V and to the eventual birth of a large attractor
embracing both local minima, which forces the system to visit the
vicinity of every minimum, including the global minimum, as time
goes by.

The latter resembles the effect from a random term within
simulated annealing38 but is achieved in a purely deterministic man-
ner. It also has some similarity with quantum annealing assumed
in quantum computers,71 which is performed thanks to the ability of
particles to tunnel the potential barriers between the local minima of
energy function. In our case, thanks to the delay, the barrier between
the two minima of the cost function disappears, thus enabling the
system to freely wander between both minima. Indeed, the barrier
between the minima is ultimately the manifold of the saddle fixed
point at the maximum, which separates the basins of attractors local-
ized near the minima. Although after the homoclinic bifurcation,
neither this manifold nor the maximum disappears, the manifold
stops being the barrier, and hence, the barrier ceases to exist.

Another important observation is that for the values of the
delay exceeding some threshold, no attractors at finite locations sur-
vive in the system, and the phase trajectory tends to infinity from
any initial conditions. This effect has been observed numerically for
all examples considered; however, it would be useful to verify its
validity analytically in the future work. In this context, it would be
interesting to understand whether the death of the last attractor at a
finite location is linked to reorganization of manifolds or is caused
by other reasons. In the absence of numerical methods for visual-
izations of the relevant manifolds in DDEs, this matter cannot be
resolved by their direct computation at this stage. With this, we are
not aware of any relevant theoretical results, which could readily
suggest a plausible explanation behind this phenomenon. Hope-
fully, this could be clarified with further development of numerical
approaches and/or theory of bifurcations in DDEs.

Our results show that the realization of the particular forms of
homoclinic bifurcations depends not only on the parameters of the
potential wells and a hump, such as the depth, width, and sharp-
ness, but also on the relationships between them. Specifically, the
local attractor around one of the minima may collide either with
the maximum itself or with the saddle cycle born from this max-
imum. Prior to the disappearance of the local attractor through a
homoclinic bifurcation, bistability may either occur or fail to occur.

However, the exact nature of homoclinic bifurcations does not
seem to change the general sequence of events as τ grows, which has
been confirmed also with a number of additional examples, includ-
ing those provided in the supplementary material. Thus, we are
satisfied with our ability to qualitatively predict the events induced
by the increase of time delay in a highly nonlinear system of a special
form.

Our results are a pre-requisite to understanding and prediction
of the phenomena in general nonlinear delay-differential equations,
in which the nonlinear function in the right-hand side depends
solely on the delayed variable. They will inform building delay sys-
tems with prescribed controllable properties in applications. For
example, if one wishes to obtain a system demonstrating a desirable
sequence of bifurcations with the increase of delay, one could use
the knowledge obtained in order to design the landscape V of (2)
with the necessary properties. Specifically, one could fine-tune the
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relative depths, widths, and shapes of the individual wells and humps
in V in order to ensure a certain order and forms of homoclinic
bifurcations.

A considerable motivation for this study has been the idea of
Ref. 41 to use delay-induced bifurcations for optimization. Here,
we demonstrated how optimization could be achieved for some
two-well cost functions if one uses the delay as the only control
parameter. Further studies will be needed to explore the possibil-
ity to extend this approach to cost functions depending on many
variables.

SUPPLEMENTARY MATERIAL

See the supplementary material that contains an overview of
the analysis of local dynamics of DDEs around the fixed points (Sec.
S-I), considers an example of a delay system (2) with a double-
well potential slightly different from that specified by (9), where
a similar, but subtly different, chain of homoclinic bifurcations is
observed (Sec. S-II), and gives three additional examples of double-
well potential functions resulting in a similar chain of bifurcations
as in examples considered in the paper (Sec. S-III).
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