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I will start with an old joke:

Student: What is proof by contradiction?
Teacher: I think you know.
Student: If I knew, I wouldn’t be asking. And I am 
asking, so that means that I don’t know.
Teacher: Ah, so you did know!

There are certain topics in mathematics where 
‘philosophy’ (in the broadest sense) is likely to 
intrude. Introducing negative or complex numbers is 
one: is mathematics discovered or invented? Another 
one is proof by contradiction (or contrapositive, 
see Kinnear & Sangwin, 2018, for a discussion of 
the difference). G H Hardy (1967, p. 94) described 
proof by contradiction as “one of a mathematician’s 
ϐ�������������ǳǡ��������� ��� ��� ���������������������
���������ϐ������ȋ�������������Ƭ������ǡ�ʹͲʹͳȌǤ��������
often say that the idea of a counterfactual situation 
is hard, and that students struggle with the logic, 
����������������������������������������������������Ȁ
contraposition is common in everyday life (as in the 
joke), and even small children employ it frequently:

Adult: Do you think mama is at home?
Child: No.
Adult: How do you know?
Child: If she were, her car would be out the front, 
and it isn’t – so she isn’t.

The mystery around proof by contradiction is 
probably not helped by the fact that students’  
ϐ����� ��������� ��� ���� ����� ������ ��� ��� ���� ��������
proof that  is irrational, which is not the simplest 
example:

Theorem

 is irrational.

Proof

Suppose that , where p and q are co-prime,

positive integers. This means that 2q2 = p2, which 
means that p must be even, so we can write p = 2m, 
where m is an integer.

Substituting this in, we get

2q2 = p2 = (2m)2 = 4m2

So, so q2 = 2m2, and this means that q must also be 
even.

But, we said at the start that p and q were co-prime, 
so they can’t both be even. So, we have a 
contradiction. Therefore,  cannot be rational.

Despite being famous, and part of the ‘canon’ of 
mathematics, this is actually a rather subtle proof to 
���� ��� ϐ����� ��������� ��� ������ ��� �������������ǡ�
because we sneaked in at the start the bit about p 
and q���������Ǧ�����Ǥ���������ǯ����������������ϐ��������
of a rational number, so students often wonder why 
it’s included. Why were we so insistent on writing 
the fraction in its lowest terms? (Note 1) The truth is 
that we only did it because we were anticipating the 
ending, and we knew that we would need that to get 
the contradiction! Really, it makes more sense to see 
������������������� ��ϐ����������������� �������������
integers, and, because there is a smallest positive 
integer, we arrive at a contradiction. So, for these 
reasons, I think that this is not the best choice for a 
ϐ�����������������������������������������ȋ�����ʹ ȌǤ����
Kinnear & Sangwin (2018) pointed out, proving the 
irrationality of something like log 2 is actually much 
easier, even though log 2 seems like a more 
‘advanced’ number than :

Theorem

log10 2 is irrational.

Proof

Suppose that log102 = pȀq, where both p and q are 
positive integers. 

(This time there is no need to make any assumptions 
about p and q being co-prime.)

This means that 2 = 10pȀq. So 2q = 10p.

We are now basically done, because we can see that 
this can’t possibly be right. Both p and q are integers 
greater than zero, so we must have a factor of a 
power of 5 on the right-hand side, but not on the left. 
(We can write 2q = 2p5p, if we prefer, which makes 
this even clearer.) The qth power of 2 is never going 
to equal a multiple of a power of 5. So, we have a 
contradiction (Note 3), and so log 2 can’t be rational.

It is always good in situations like this to try to 
unpick a little why it fell out the way it did. Proofs 
should be convincing, but the best ones are also 
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enlightening. What is it about the numbers 2 and 10 
that makes this happen? The crucial thing is that one 
is not a rational power of the other. If, instead, we 
used 2 and 8, no contradiction would be reached, 
since �����=

�
�

 gives 2q = 8p = 23pǡ������� ��� ϐ���ǡ�

giving q = 3p and therefore �
�
= ����  Of course, we 

knew this at the start because �
�
� =� , and so 

�����=
�
� . Once you see what is going on here, this 

may actually be enough to convince you, at least 
informally, that logba is going to be rational if and 
only if a is a rational power of b (equivalent to vice 
versa). Similarly, with the proof of the irrationality of 

, it is well worth working it through for , just 
to see why exactly the proof fails in the case of the 
square root of a square number, and for , to see 
why it doesn’t require the square-rooted number to 
be prime.

However, there is really no reason to wait until 
students meet logarithms before introducing proof 
by contradiction. A much earlier opportunity would 
be something like Euclid’s proof that there are 
��ϐ������������� ������ǡ������� ���� ��� ����� ��� �ͳ�
(Note 4):

Theorem

������������ϐ�������������������Ǥ

Proof

Suppose, for contradiction, that there is a ϔ����� 
number of primes. Write them all down as a list.
Multiply them all together and add 1. Call this num-
ber n.

Is n prime?

ȋ�Ȍԙ���������ǡ������������������������ǡ�����������ǯ���
found a number, bigger than any on our list, 
which is prime.

ȋ��Ȍ�Ԙ���� ��� ���ǯ�� �����ǡ� ����� �������� ��� �� product of 
smaller primes. But none of the primes on 
our list can be factors of n, because all of them 
leave a remainder of 1 when divided into n. So, 
n must have at least one prime factor that we 
didn’t have on our list. So, again, we have a con-
tradiction.

�����������������������������������ϐ�������������
of primes.

I think it is much easier to get the sense of a proof 
by contradiction with something like this than with 
the classic proof of the irrationality of . (See also 
Savic, 2017, for a discussion about choice of content 
for introducing proofs.)

Are there even easier proofs by contradiction? 
There certainly are; one of the simplest is proving 

that there is no largest integer. Even quite small 
children can understand this as well as anyone, 
although the idea that ‘you can always add 1’ is not 
often formulated as a proof by contradiction. We 
can sharpen that up by supposing, for contradiction, 
that there is a largest possible integer. Write it down. 
ȋ�������������ǡ���ϐ��������Ǯ�������������ǯ�������������
quite useful for making concrete what is going on.) 
Then, suppose I decide to add 1 to your number, and 
thus obtain a larger integer. So, you must have been 
wrong to think that the number you wrote down was 
the largest integer, because I just made a larger one! 
You can think of this as an iterative process, where 
you keep thinking you’ve found the largest integer, 
only to be foiled when I impertinently add 1 to it. 
But, for proof by contradiction, you only need to go 
through this once to establish the result.

The idea of proof by contradiction takes a bit of 
getting used to, so it is worth introducing it early 
on, when everything else that’s happening in the 
proof isn’t too taxing. “Assuming something you 
know ain’t true” can feel wrong to students – and it 
should. One way to address this concern is to begin 
with “Suppose” rather than “Assume”, and to see the 
whole proof as a big “If”. I’m not saying my premise 
is true – I’m asking what follows if it is true. If what 
follows is eventually clearly a nasty contradiction 
or absurdity, it means that my opening statement 
must have been false. But students often seem to 
feel that it’s really a bit more complicated than 
this. Supposing something that isn’t true (even if 
�������ǯ����ϐ��������Ǯ����ǯ������������ǯ�������Ȍ�����������
quite a problematic thing to do. Once I suppose 
something that is false, that moves me into a 
counterfactual mathematical world. How on earth 
should I know what the rules are for operating in 
that world? For example, suppose that 1 + 1 = 3. 
What follows from that? Should I double both sides 
and get 2 + 2 = 6? Or should I add 2 to both sides 
and get 2 + 2 = 5? Which step is ‘correct’ in this 
counterfactual world? What does 2 + 2 equal? Of 
course, in a sense, that is the whole point. The fact 
that in this world 5 = 6 should tell us that 1 + 1 
= 3 is false. (Or maybe it’s the other way round, 
and 1 + 1 = 3 is even more obviously false than 
5 = 6 is?) But the idea that there are valid steps 
to perform in the counterfactual world is a bit 
strange. The teacher might place a tick beside each 
line of working, but what does that signify? Once
I assume something like 

 
�= �

�
, how can anyone

really comment on the ‘correctness’ of any 
subsequent lines? It is not that I eventually, after 
several correct steps, ‘arrive’ at a contradiction, as 
people often say – it’s contradictions all the way 
down! It’s really a matter of judgment how brazen 
the contradiction needs to be before I quit and 
consider the proof completed – how far I decide I 
need to go before I anticipate that the reader will 
accept my use of a contradiction symbol. In more 
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advanced work, arriving at ‘  is rational’ would 
count as a contradiction, and we would stop there!

So, the students’ objections make a lot of sense. 
Asking a question like ‘If Pythagoras’s Theorem 
weren’t true, what would follow from that?’ is 
an impossible question. Saying ‘We assume that 
everything else works as normal – we just suppose 
that one false thing’ doesn’t seem to help. Assuming 
that 1 + 1 = 3, it is impossible to say what 2 + 2 
should equal, so we’re unable to proceed to the next 
line. Making an assumption like that ‘breaks maths’, 
and so ought to stop us in our tracks. Principles like 
‘multiplying both sides of an equation by the same 
amount preserves the equality’ don’t seem to work 
any more – or, at least, we feel unsure whether 
we can rely on them. This is not a weird property 
of arithmetic statements – it’s always the case 
when we try to operate based on a false premise. 
���� ϐ����� ����������������� ������ ����� �����������
just because we’re not astute enough to see that 
everything that we are writing is false. We deceive 
ourselves into thinking that each line ‘follows’ from 
the previous line in the normal way, and we are kind 
of doing normal mathematics, but we are (wittingly) 
writing nonsense; we pretend to be shocked when 
a contradiction eventually ‘appears’. Even worse, 
students sometimes ask, is there possibly a danger 
that ‘two wrongs could make a right’, and we could 
slip back into truth from our initially false starting 
�����ǫ�����������������ϐ������������������������������
the students’ satisfaction.

�� ������ ���������������ϐ��������� �������������������
proof by contradiction are not always failures to 
understand the basic logic, but problems knowing 
what they are really doing when proceeding in 
‘counterfactual mathematical worlds’, and a general 
sense that the whole thing feels dubious.

Notes

1. Students sometimes feel that all that they have 
proved is that  cannot be expressed as a 
������ϔ��� fraction, but that it perhaps could 
���������������������������ϐ�������ǡ����������
either the numerator or the denominator or 
both contained some ‘decimals’.

2. The step where we say that q2 = 2m2 means that 
q is even perhaps itself needs proving? And this 
suggests a rather different approach to the 
standard proof. One way to do this is to start 
talking about square numbers, rather than surds 
(see Foster, 2012). The teacher starts by asking, 
ǲ���� ���� ϐ���� �� ������� ������� ����� ��� twice 
another square number?” Students will try 
doubling a few square numbers and notice that 
none of their doubles is square, or else  
they will try halving squares, but they don’t get 
any squares that way either. They may offer  

02 = 2 × 02, which is good thinking, but you can 
retort that 0 is just one square number rather 
than “another square number”. Students may 
notice that doubling twice works: when you 
double 4 you get 8, which isn’t square, but when 
you double 8 you get 16, which is – and this 
always seems to work. So, four times a square 
number always seems to give another square 
number, but with doubling it never seems to 
work, and after a while someone will offer the 
conjecture that it is impossible, and you can ask, 
“Why should it be impossible?” Of course, this is 
equivalent to  being irrational, because 

 is equivalent to p2 = 2q2, where p and q 

are positive integers.

ԙԘ��The easiest way to see why p2 = 2q2 cannot 
happen is by using prime factorisation (Coles, 
2005). If p = axbycz … where a, b, c, ... are distinct 
primes and x, y, z, ... are positive integers, then

ԙԘ�p2 = a2xb2yc2z … ,
ԙԘ�������������������������������������������������even. 

The problem with 2q2 is that we have an extra 
factor of 2, so in the prime factorisation of 2q2 it is 
necessarily the case that 2 will appear to an odd 
power. This means that 2q2 cannot possibly equal 
p2, because an odd power of 2 cannot equal an 
even power of 2. This is nice, because immediately 
we see what it is about the 2 that is problematic, 
���� ���� ������� Ͷ� �������� ������ ��� ϐ���Ǥ� 
The 2 is a problem not because it’s prime but 
because it isn’t a square number. Without  
doing any more work, we can see that  
p2 = 3q2 will fail for exactly the same reason as  
p2 = 2q2, as will something like p2 = 6q2, even 
though 6 is not prime. So, in general, p2 = kq2 will 
have solutions for positive integer p and q if and 
only if k is square. And this is equivalent to saying 
that  is integer k if and only if k is square.

3. In cases like this, ‘contradiction’ is not exactly 
the right word, as we don’t directly contradict 
the initial statement; however, we arrive at 
something that is clearly false. Maybe we should 
call these ‘proof by absurdity’ or something?

4. It has been pointed out that Euclid’s original proof 
of this is not actually a proof by contradiction. 
Indeed, whether proofs are technically ‘by 
contradiction’ is often a subtle matter. Hamkins 
(2020, pp. xvii–xviii) commented, “I do not 
ϐ����������������������������ǥ�����������������
or robust mathematical category. Such a proof, 
after all, might contain essentially the same 
mathematical insights and ideas as a nearby 
poof that does not proceed by contradiction.” 
For example, uniqueness proofs, such as the 
uniqueness of an inverse, are often done by 
contradiction. You start by supposing that there 
are two inverses, and you call them i and j. 
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Perhaps you should say “two distinct inverses”, 
although people often don’t. Then, you go 
through your algebra and end up with i = j. 
What does that tell you? Students will often say 
that it means that they are ‘the same inverse’, 
or that ‘all inverses are equal’. Is this a proof by 
contradiction? It doesn’t seem to be, unless you 
were careful to state that i ് j at the start. Then, 
the argument would be that you supposed that 
i and j were distinct inverses, and now you’ve 
found that they are equal, which contradicts the 
statement that they were different. If, on the 
other hand, you don’t bother to say that they 
are distinct inverses, then what follows from 
ϐ������������ ���������������ǫ������� ����������
still be another inverse out there somewhere, 
different from your i and j – call it k – which 
is different from those two? Does the fact that 
i and j turned out to be the same necessarily 
prove that there can be no others? You perhaps 
need instead to start by saying something like, 
“Suppose that i and j are any two inverses’. Then, 
concluding that i = j really means something, 
because we’ve shown that any two things that 
are inverses must be equal to each other, and 
therefore that all inverses are equal. It may 
seem pedantic to belabour this, but sometimes 
by being sloppy about things like this we simply 
confuse students more.
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Book Reviews, Edited by Jenny Wood
The reviews below have been written by Jenny Wood, Craig Lowther, Phillip Green and Simon Johnson. Note that 
the prices given are the full prices quoted by the publisher and that special deals and discounted prices may be 
available from either the publisher or the retailer.

Fourth Level (bridging to National 5) 
Mathematics and Numeracy, by Dr Helen Kelly, 
Kathleen McQuillan, Dr Alan Taylor (2021). Hodder 
Gibson. ISBN: 978-1-3983-0881-7. Paperback, 
£15.99, pp 250.

A vibrant and engaging addition to the Hodder Gibson 
BGE family, this textbook covers all the benchmarks 
for Mathematics at Fourth Level, extending into 
National 5 material where appropriate. 

The introduction sets out the aim that “every topic 
is explained with rigour, taking no shortcuts, and 
has an abundance of practice and challenge to suit 
every learner.” A particular strength of this textbook 
is indeed the level of detail and clarity of the worked 
examples – useful for both the learner and also 
parents who may be trying to help! An excellent 
example of this is the Standard Deviation topic – 
the explanation is clear enough that a pupil could 
understand the process just by reading the worked 
example, which not only explains which steps to 
take, but how the process works.

�������������������ϐ������������������������������	������
Level textbook which strikes a good balance of 
questions for the learners in my class at this stage. 
Often exercises will not provide enough challenge, 
or at the other end of the spectrum, even the early 
������������������������������ϐ����������������������
have a proper attempt. This textbook manages to 
both support and scaffold learners at the beginning 
of an exercise whilst providing an appropriate 
degree of challenge towards the end, as well as a 
good amount of rigour in-between.

As with the Third Level book, a Planning and 
Assessment Pack is also available, containing 
assessments and homework for each topic as well 
as detailed teaching notes.

This is a fantastic resource for any Mathematics 
�������������Ȁ��������������������������Ǥ���������ǯ��
hesitate to recommend to pupil, parent, or teacher. 
I will add a class set of these to my Christmas list!
 Jenny Wood
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