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Abstract: Snow coverage mapping plays a vital role not only in studying hydrology and climatology,
but also in investigating crop disease overwintering for smart agriculture management. This work
investigates snow coverage mapping by learning from Sentinel-2 satellite multispectral images via
machine-learning methods. To this end, the largest dataset for snow coverage mapping (to our best
knowledge) with three typical classes (snow, cloud and background) is first collected and labeled
via the semi-automatic classification plugin in QGIS. Then, both random forest-based conventional
machine learning and U-Net-based deep learning are applied to the semantic segmentation challenge
in this work. The effects of various input band combinations are also investigated so that the most
suitable one can be identified. Experimental results show that (1) both conventional machine-learning
and advanced deep-learning methods significantly outperform the existing rule-based Sen2Cor
product for snow mapping; (2) U-Net generally outperforms the random forest since both spectral
and spatial information is incorporated in U-Net via convolution operations; (3) the best spectral
band combination for U-Net is B2, B11, B4 and B9. It is concluded that a U-Net-based deep-learning
classifier with four informative spectral bands is suitable for snow coverage mapping.

Keywords: snow coverage; sentinel-2 satellite; remote sensing; multispectral image; random forest;
u-net; semantic segmentation

1. Introduction

Remote sensing technology (e.g., satellite-based, unmanned aerial vehicle (UAV)-
based, ground-based) can provide a nondestructive way of spatially and temporally moni-
toring the targets of interest remotely, which has drawn increasing attention recently with
the rapid development of autonomous system innovation, sensing technology and image-
processing algorithms, especially with convolutional neural network-based deep-learning
approaches. Taking remote sensing in geosciences as an example, UAV multispectral im-
ages are used in [1] for bulk drag prediction of Riparian Arundo donax stands so that their
impact on vegetated drainage channel can be assessed. Terrestrial laser scanning is also
used in [2] to investigate physically based characterization of mixed floodplain vegetation.
Meanwhile, the interest in agricultural applications of remote sensing technology has also
been exponentially growing since 2013 [3], where the main applications of remote sensing
in agriculture include phenotyping, land-use monitoring, crop yield forecasting, precision
farming and the provision of ecosystem services [3–6].

Crop disease monitoring and, more importantly, the accurate early forecasting of
crop disease outbreak by making use of the remote sensing data has also attracted much
attention in recent years [6–8]. In particular, temperature and humidity are the two most
important environmental factors determining the activities of pathogenic microorganisms.
A good example is the wheat stripe rust, one of the most destructive diseases in wheat
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in China, whose outbreak potential is largely determined by temperature. On the one
hand, snow covering in winter means freezing low temperature; however, a study has
also shown that winter snow covering could also weaken the negative effects of extreme
cold temperature on rust survival [9]. A crop disease outbreak forecasting model with the
consideration of snow coverage and duration information would no doubt generate better
prediction performance. However, it is still a challenge to obtain accurate snow coverage
and duration data for use in a forecasting model [7]. This is because manually obtaining
this information for various areas of interest (mountainous areas in particular) would pose
serious logistics and safety issues for agronomists.

In recent decades, many remote sensing satellites with various sensors (including
multispectral sensors) have been launched into Earth orbit, meaning that estimating snow
coverage from satellite images turns out to be the most promising solution for large-scale
applications. In particular, some of these satellite data are publicly accessible and com-
pletely free; for example, Sentinel-2 satellites can provide multispectral imagery with
a 10-m resolution (the highest resolution among freely available satellites) and a 5-day
global revisit frequency for spatial-temporal land surface monitoring [10]. One of the most
challenging parts of snow coverage mapping via satellite imagery is to distinguish snow
from cloud. The major issue is that snow and cloud share very similar appearance and
color distribution, and, as a result, manually separating snow pixels from cloud pixels
requires expert knowledge and is still a tedious and time-consuming process. This simi-
larity (between snow and cloud) also poses challenges for image classification algorithms,
particularly for color images.

Currently, there are several empirical threshold test-based tools available to classify
snow and cloud, such as Fmask [11], ATCOR [12] and Sen2Cor [13]. Despite the great
potential of accurate snow coverage mapping, there is surprisingly little literature directly
focused on snow coverage segmentation via satellite images. In contrast, there is much
more literature studying the segmentation of cloud and land-cover scenes [14–17]. Zhu and
Woodcock reported an empirical threshold test-based method called Tmask that uses multi-
temporal Landsat images to classify cloud, cloud shadow and snow, and they demonstrated
that the multi-temporal mask method significantly outperformed the Fmask approach,
which only uses single-date data in discriminating snow and cloud [18]. Zhan et al. re-
ported a fully convolutional neural network to classify snow and cloud in pixel levels for
Gaofen #1 satellite imagery, with an overall precision of 92.4% in their own dataset [19].
However, Gaofen #1 satellite imagery is unfortunately not publicly accessible, and their
manually labeled dataset is not publicly available either. More often, within the snow
classification-related studies, snow is only listed as one of the many sub-classes and ac-
counts for very limited representation [16,20,21]. Although the empirical thresholds of
test-based methods such as Fmask [11], ATCOR [12] and Sen2Cor [13] can provide rough
snow prediction in most scenarios, studies that focused on improving snow coverage
segmentation performance by making use of machine (deep)-learning algorithms are still
missing. It should be highlighted that conventional machine-learning methods and recent
deep-learning methods (in particular) have made significant breakthroughs with appre-
ciable performance in various applications including agriculture, and these are therefore
worth investigation for snow coverage mapping as well [22,23].

Therefore, in this study, we first carefully collected 40 Sentinel-2 satellite images with
scenes including representative snow, cloud and background that are distributed across
almost all continents. Each pixel of the 40 scenes is labeled into three classes—snow,
cloud and background—via the semi-automatic classification plugin in QGIS; thus, they
become the largest publicly available satellite imagery dataset dedicated to snow coverage
mapping. We then compared the reflectance distributions of the three classes across the
12 Sentinel-2 spectral bands and found the most informative band combination that was
able to distinguish snow, cloud and background. Lastly, we compared the classification
performance of three representative algorithms—Sen2Cor for thresholds test-based method,
random forest for traditional machine learning, and U-Net for deep learning. We showed
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that the U-Net model with the four informative bands (including B2, B11, B4 and B9) as
inputs gave the best classification performance on our test dataset.

2. Materials and Methods

To make the work readable, the entire workflow is illustrated in Figure 1.

Training set 
(n=34)

 Bands reflectance investigation

 Feature selection

Test set
(n=6)

RFRGB

RF4bands

RF12bands

U-NetRGB

U-Net4bands

U-Net12bands

Sen2Cor

1. Data collection

2. Data labelling

4. Model training

5. Model evaluation3. Data exploration

Clipped into patches

(Sentinel-2)

(Google Earth Engine)

Figure 1. The entire workflow is divided into data collection, data labeling, data exploration, model
training and model evaluation.

2.1. Satellite Image Collection

Sentinel-2 satellite images are freely accessible from several platforms, such as the
Copernicus Open Access Hub [24], USGS EROS Archive [25] and Google Earth Engine [26]
among others. In this study, all Sentinel-2 satellite images were directly downloaded from
the Google Earth Engine via some basic scripts in Java. Our main purpose is to conduct
snow mapping of Earth’s surface, therefore, we focused on the corrected Sentinel-2 Level-
2A product instead of the Level-1C product, as the Level-2A provides Orthoimage Bottom
Of Atmosphere (BOA) corrected reflectance products. Moreover, the Level-2A product
has itself included a scene classification map, including cloud and snow probabilities at
60 m resolution, which are derived from the Sen2Cor algorithm. However, it should also be
noted that Level-2A products are only available after December 2018, although a separate
program is available to generate Level-2A products from Level-1C product.

There are a total of 12 spectral bands for Sentinel-2 Level-2A product, which include
B1 (Aerosols), B2 (Blue), B3 (Green), B4 (Red), B5 (Red Edge 1), B6 (Red Edge 2), B7 (Red
Edge 3), B8 (NIR), B8A (Red Edge 4), B9 (Water vapor), B11 (SWIR 1) and B12 (SWIR 2). The
cirrus B10 is omitted as it does not contain surface information. Of the 12 available spectral
bands, B2, B3, B4 and B8 are all at 10 m resolution, the resolutions of B5, B6, B7, B8A, B9
and B12 are 20 m, and the remaining two bands of B1 and B19 have 60 m resolution. Within
all our downstream analyses, all spectral bands with resolutions different from 10 m were
re-sampled to 10 m to achieve an equal spatial resolution across all spectral bands.

During our scene collection, we specifically choose scenes that include human-
identifiable snow, cloud, or both snow and cloud. It is important to ensure that the snow
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and cloud scenarios are human identifiable, as we are doing a supervised machine-learning
task and our next step data annotation is to label each pixel into three classes. To ensure that
the collected dataset includes a large diversity of scenes (to be representative), we selected
the scenes to cover different continents, years, months and land-cover classes. Lastly, we
only kept a representative 1000 pixels × 1000 pixels region for each scene; this is, on the
one hand, to reduce the redundant contents of a whole product and, on the other hand, to
greatly reduce the amount of time needed for the following data annotation step.

2.2. Data Annotation

Upon downloading the representative images, the next step is to manually label them
into different classes for machine/deep-learning model construction. The data annotation
step involves manually labeling every pixel into one of three classes (i.e., snow, cloud
and background) by human experts. As the multispectral satellite images are not readily
human-readable, we first extract the B4, B3 and B2 bands and re-scale them into the three
channels of a typical RGB image (i.e., false-color RGB image). However, it is obvious that
snow and cloud share very similar colors (i.e., close to white) and texture across many
scenes, thus it is almost impossible to distinguish them, especially when there are overlaps
between snow and cloud. B12 (SWIR 2) is known to have a relatively better separation
between snow and cloud than other bands, thus we also created a false-color image, with
B2, B3 and B12 as the R, G, B channels, for each scene. Then, all the downstream labeling
processes are performed on the false-color images.

The pixel-level labeling process was performed in QGIS platform (Version: 3.18.2) [27].
Recently, Luca Congedo developed a Semi-Automatic Classification Plugin for QGIS, which
is reported to be able to ease and automate the phases of land-cover classification [28].
Therefore, our labeling processes were completed with the help of the Semi-Automatic
Classification Plugin (Version: 7.9) [28]. Specifically, for each image, we first select and
define several representative regions for each target class; then, we use the Minimum
Distance algorithm of this plugin to group all other pixels into the pre-defined classes. All
final generated classification masks were carefully checked by two human experts to make
sure the label for snow and cloud is as correct as possible.

2.3. Sen2Cor Cloud Mask and Snow Mask

The Sentinel-2 Level-2A product itself includes a cloud confidence mask and snow
confidence mask, which are both derived from the Sen2Cor system. The algorithm used
by Sen2Cor to detect snow or cloud is based on a series of threshold tests that use top-of-
atmosphere reflectance from the spectral bands as input; the thresholds are also applied
on band ratios and several spectral indices, such as Normalized Difference Vegetation
Index (NDVI) and Normalized Difference Snow Index (NDSI). In addition, a level of
confidence is associated with each of these threshold tests, and the final output of the series
of threshold tests are a probabilistic (0–100%) snow mask quality map and a cloud mask
quality map [29]. In our study, the snow confidence mask and cloud confidence mask of
each scene were directly downloaded from Google Earth Engine along with its Level-2A
spectral band data. For a better visualization of the Sen2Cor classification performance, for
each satellite scene, we put the cloud confidence mask, snow confidence mask and snow
confidence mask into the three channels of a color image to generate the final Sen2Cor
classification mask.

2.4. Random Forest with Bayesian Hyperparameter Optimization

The ‘sklearn.ensemble.RandomForestClassifier’ function in sklearn library (Version:
0.24.2) [30] in Python (Version: 3.8.0) is used to construct Random Forest (RF) models to
evaluate the performance of traditional machine-learning algorithms in classifying snow
and cloud with the inputs of independent BOA-corrected reluctance data from different
spectral band combinations.
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RF is a decision tree-based algorithm, which has been widely applied in crop disease
detection [31]. To improve the prediction accuracy and control the problem of overfitting,
we need to fine-tune several key hyper-parameters for the training of each RF model [32]. In
this study, we mainly fine-tuned three hyper-parameters: the number of trees in the forest,
the maximum depth of the tree and the minimum number of samples required to split
an internal node. Instead of using random or grid search for the optimal hyperparameter
combination, we applied the Bayesian Optimization [33] to find the optimal parameter
combination for each RF model. Bayesian optimization enables finding out the optimal
parameter combination in as few iterations as possible, which works by sequentially
constructing a posterior distribution of functions (Gaussian process) that best describes
the function you want to optimize. Here, we used the average of five-fold cross-validation
scores, which resulted from training a random forest model with weighted F1 score as the
loss function, as the optimization function of Bayesian optimization. After the Bayesian
optimization, a random forest model with the optical parameters setting is trained.

We then applied both forward sequential feature selection (FSFS) and backward
sequential feature selection (BSFS) to rank the importance of each spectral band and more
importantly to find out the optimal band combination, which has fewer bands and at the
same time can capture the most informative features. FSFS sequentially adds features and
BSFS sequentially removes features to form a feature subset in a greedy fashion. FSFS
starts with zero features; at each stage, it chooses the best feature to add based on the
cross-validation score of an estimator (RF classifier in this study). By contrast, BSFS starts
with full features and sequentially selects the least important features to be removed at
each stage.

2.5. U-Net Training

U-Net is a convolutional network architecture for fast and precise segmentation of
images [34], which has been applied for yellow rust disease mapping in [5,32]. In this study,
U-Net is used as the representative deep-learning model for satellite image classification. It
is noted that our collected satellite images are in the size of 1000 × 1000 pixels. However,
to make our deep-learning models rely less on large-size images and to greatly increase
the samples size of training dataset, we set the model input to have a width of 256, and
height of 256 and channels of N, where N depends on the used combination bands in
different models. For each satellite image in the training dataset, we clipped it into small
patches in a sliding window way—with a window size of 256 × 256 pixels and a sliding
step of 128 pixels. As a result, each satellite image will yield around 49 patches of size
256 × 256 × N.

The details of the U-Net network architecture are shown in Figure 2. It consists of an
encoding path (left side) and a decoding path (right side). Every block of the encoding
path consists of two repeated 3 × 3 unpadded convolutions, each followed by a batch
normalization (BN) layer and a rectified linear unit (ReLU), then a 2 × 2 max pooling
operation with stride 2 is applied for downsampling. Each block of the decoding path
includes a 2× 2 transpose convolution for feature upsampling, followed by a concatenation
with the corresponding feature map from the encoding path, then two 3 × 3 convolutions,
each followed by a BN and a ReLU. The final layer is a 1 × 1 convolution to map each pixel
in the input to the desired number of classes.

The U-Net model is constructed and trained based on the Pytorch deep leaning
framework (Version: 1.7.1) [35]. For model training, we take the patches located in the first
column or first row of the generated patch matrix of each training satellite image into the
validation set and the remaining patches excluding those that have overlap with validation
patches are selected as the training data, the ratio of the number of validation patches to
training patches is about 19.1%. The model stops training until the loss of the validation
data does not decrease after 20 epochs. To train the U-Net models, we used the weighted
cross-entropy loss as the loss function, stochastic gradient descent as the optimizer with
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learning rate of 0.01 and momentum ratio of 0.9. The input batch size is set to be 4. The loss
curves of the training processes for U-Net with different input bands are shown in Figure 3.
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Figure 3. Loss curves for training data (blue) and validation data (orange) in training process of (A)
U-NetRGB, (B) U-Net4bands and (C) U-Net12bands. The dashed line indicates the epoch with smallest
validation loss and the loss in the Y-axis represents the weighted cross-entropy.
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2.6. Evaluation Matrix

To systematically compare the classification performance of the different models, we
have used the following evaluation matrices including prevision, recall, F1 score and
Intersection Over Union(IoU) and Accuracy

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1_score = 2 × Precision × Recall
Precision + Recal

(3)

Intersection over Union(IoU) =
Area of Overlap
Area of Union

(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where TP represents true positive numbers, FP represents false positive numbers and FN
represents false negative numbers.

Loss (weighted cross entropy loss) = −
M

∑
c=1

wcyo,clog(po,c) (6)

where M = 3 is the number of classes (snow, cloud and background), wc is the weight
value for class c which is defined as the ratio between the total number of pixels in the
training set and the number of pixels in class c, yo,c is binary indicator (0 or 1) if class label c
is the correct classification for observation o, yo,c is the predicted probability of observation
o is of class c.

3. Results
3.1. Largest Snow-Mapping Satellite Image Dataset

To validate and compare different methods in classifying snow and cloud for satellite
images, we carefully searched and selected 40 Sentinel-2 L2A scenes across the globe as
displayed in Figure 4. In addition, the details about their product ID, coordinates and
timing are listed in Table. 1.

2019
2020
2021

Figure 4. Geographical distribution of the 40 selected sites denoted by empty triangles, with different
colors representing scenes obtained from different years, i.e., cyan, red and green denotes scenes
dated from the years in 2019, 2020 and 2021.
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Table 1. Product IDs and coordinates of the 40 collected scenes.

Product ID X Coordinate Y Coordinate Date

20190110T112439_20190110T112436_T30UVG −2.96 55.25 10 January 2019
20190113T113429_20190113T113432_T30UVG −4.09 55.17 13 January 2019
20190129T151649_20190129T151651_T20UNA −62.2 50.16 29 January 2019
20190205T055031_20190205T055025_T45VUE 85.08 57.71 5 February 2019
20190205T164459_20190205T164614_T17ULA −82.53 54.86 5 February 2019
20190205T164459_20190205T164614_T17ULA −83.13 54.47 5 February 2019
20190727T035549_20190727T040012_T47SPT 100.5 33.99 27 July 2019
20190730T040549_20190730T041756_T47SMS 98.79 33.4 30 July 2019
20190730T040549_20190730T041756_T47SMT 98.77 33.68 30 July 2019
20191121T062151_20191121T062148_T42UWV 69.8 48.97 21 November 2019
20191124T005709_20191124T010446_T53HNE 136.05 −31.79 24 November 2019
20191127T041109_20191127T041653_T47SMS 98.95 33.38 27 November 2019
20191127T041109_20191127T041653_T47SPT 100.16 34.18 27 November 2019
20200129T151641_20200129T151643_T20UNA −61.71 50.32 29 January 2020
20200215T054929_20200215T054925_T45VUE 84.81 57.94 15 February 2020
20200701T095031_20200701T095034_T34VFN 24.22 60.46 1 July 2020
20200724T142739_20200724T143750_T18FXK −72.5 −50.18 24 July 2020
20200729T142741_20200729T143445_T19GCR −70.2 −40.51 29 July 2020
20200801T182919_20200801T183807_T12VWH −110.14 56.28 1 August 2020
20200805T085601_20200805T085807_T35UQS 30.37 51.06 5 August 20205
20200810T141739_20200810T142950_T19GCP −70.8 −42.4 10 August 2020
20200817T084559_20200817T085235_T36UXD 35.63 52.73 17 August 2020
20201113T005711_20201113T005712_T53JNF 135.86 −31.65 13 November 2020
20201123T005711_20201123T010434_T53HNE 135.79 −31.71 23 November 2020
20201206T041141_20201206T041138_T47SNT 99.74 33.72 6 December 2020
20201222T111501_20201222T111456_T29RPQ −7.74 31.1 22 December 2020
20210105T050209_20210105T050811_T45SUR 85.74 32.43 5 January 2021
20210110T182731_20210110T182953_T12TVR −111.66 45.12 10 January 2021
20210207T151649_20210207T151817_T20UNA −62.05 50.29 7 February 2021
20210208T112129_20210208T112318_T30VWJ −1.57 57.14 8 February 2021
20210211T113319_20210211T113447_T30VWJ −2.02 57.31 11 February 2021
20210708T141051_20210708T142222_T20HLB −64.31 −39.38 8 July 2021
20210712T082611_20210712T084900_T34JBM 18.11 −30.39 12 July 2021
20210724T081609_20210724T083856_T34HCJ 19.67 −33.41 24 July 2021
20191123T111259_20191123T112151_T29RNQ −8.3 31.22 23 November 2019
20200713T103031_20200713T103026_T33VWH 15.31 60.46 13 July 2020
20200804T223709_20200804T223712_T59GLM 169.47 −44.02 4 August 2020
20200805T001109_20200805T001647_T55GCN 145.04 −42.94 5 August 2020
20201126T041121_20201126T041842_T47SNT 100.09 33.93 26 November 2020
20210714T081609_20210714T083805_T34HCJ 19.16 −33.13 14 July 2021

The 40 sites have been chosen to ensure scene diversity. In particular, the 40 sites
are distributed across all six continents except for Antarctica. With the constant high
temperature in the low latitudes, our selected snow and cloud scenes are all distributed in
middle- and high-latitude areas. Since the Sentinel-2 Level-2A products have only been
available since December 2018, our collected scenes are all dated from the last three years,
i.e., 2019, 2020 and 2021. For each scene, all 12 atmospheric corrected spectral bands, i.e.,
B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11 and B12, are collected, and the cloud confidence
mask and the snow confidence mask which are derived from the Sen2Cor algorithm are
also downloaded along with the spectral bands by the Google Earth Engine. Each band
of the scene is re-sampled to 10 m resolution. For each scene product, we only kept a
representative region, where the sizes of width and height are both 1000 pixels, which
contains human identifiable snow or cloud.

Every pixel of all 40 collected satellite images were labeled into three classes includ-
ing snow, cloud and background using the Semi-Automatic Classification Plugin [28] in
QGIS. We took six representative scenes as the test dataset, and their false-color RGB
images and classification masks are shown in Figure 12. The remaining 34 scenes were
put into the training dataset, and their RGB images and classification masks are shown in
Figures 5 and 6, respectively.
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20190110 20190113 20190129 20190205 20190205 20190205 20190727
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Figure 5. Visualization of all 40 scenes via RGB bands, with the above numbers being the scene
captured date.
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Background
Cloud
Snow

Figure 6. Labeled classification masks of all 40 collected scenes. The three target classes are repre-
sented by different colors: black denotes background, red denotes cloud and cyan denotes snow.

3.2. Spectral Band Comparison

Snow and cloud are both white bright objects seen from the satellite RGB images,
and they are often indistinguishable in most scenarios by only looking at RGB images.
We first compared the reflectance distributions of snow, cloud and background in the
12 spectral bands from the Sentinel-2 L2A product. From the boxplots in Figure 7, we could
first observe that the background pixels have relative low reflectance values across all
12 spectral bands, and the median reflectance values are all less than 2500. Snow and cloud
showed similar and relatively high reflectance values (median reflectance values are greater
than 5000) in the first ten spectral bands; however, they also both have high reflectance
variations in these ten bands.
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Regarding snow and cloud, B12 and B11 are the top two bands that best separate snow
and cloud, with a median reflectance around 950 in snow, compared to that of around 2500
in the cloud. This is in line with our expectations, as B12 and B11 are both designed to
measure short-wave infrared (SWIR) wavelengths, and they are often used to differentiate
between snow and cloud. However, the distribution of background is very similar to snow
in B11 and B12 although with larger fluctuations. B9, B1 and B2 are the three next bands that
have a relatively larger distribution difference between snow and cloud. Interestingly, even
though snow and cloud have very similar reflectance distributions in the first 10 bands, the
cloud has a slightly higher median value than snow in nine out of the ten bands (except
B4). In summary, there are several spectral bands that have good separation between any
two of the three classes; however, there is no single band that clearly separates the three
classes simultaneously.
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Figure 7. Boxplots comparing the bottom of atmosphere corrected reflectance of 12 spectral bands
from Sentinel-2 L2A products for background (white), cloud (red) and snow (cyan). Note: the outliers
of each boxplot are not displayed.

The Normalized Difference Snow Index (NDSI) has been suggested to be useful
in estimating fractional snow cover [36,37]. It measures the relative magnitude of the
reflectance difference between the visible green band and SWIR band. Here we also
compared the NDSI distribution of snow, cloud and background in the training dataset,
where the results are displayed in Figure 8. Our results showed that despite there being
three major different spikes representing the three classes respectively, the huge overlaps
between the snow spike and the cloud suggest that NDSI (though being the best index for
snow mapping) is not a very accurate index to distinguish snow and cloud.

3.3. Optimal Band Combination

Our results in the previous section have demonstrated that no single spectral band
(or index) is able to give clean separations between the three classes, i.e., snow, cloud
and background. However, combining several bands is very promising. For example,
the background pixels have clear separations with snow and cloud across the first ten
bands, and the reflectance distribution of cloud is largely different from that in background
and the snow within B12 or B11. Among the 12 spectral bands of the Sentinel-2 Level-2A
product, some bands may capture similar features and thus may be redundant when used
to distinguish the three classes. To find out the optimal band combination that captures
the most useful information to discriminate the three classes that at the same time has
fewer (saving computation resources) bands included, we applied both Forward Sequential
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Feature Selection (FSFS) and Backward Sequential Feature Selection (BSFS) (please refer to
the Methods section for details), where their results are displayed in Figure 9.
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Figure 8. NDSI distribution of snow (cyan), cloud (red) and background (black) pixels, where the
NDSI is defined as NDSI = (B3 − B12)/(B3 + B12)

As shown in Figure 9, the B2 (Blue) band is ranked as the most important band by
both forward and backward sequential feature selection. B12 and B11 are two SWIR bands,
and they are listed as the second most important bands by FSFS and BSFS, respectively.
However, the band combination of B2 and B12 slightly outperforms the B2 and B11 combi-
nation when used as an input for constructing models to separate the three classes (OOB
errors 0.109 vs. 0.123). FSFS and BSFS both identified B4 (Red) as the third most important
band, and again the combination of B2, B11 and B4 identified by BSFS demonstrated as the
best three-band combination. The sequential addition of more bands into the model input
subset gives minimal improvements, especially when the top four bands have already been
included. As a result, we take the combination of B2, B11, B4 and B9 as the most informative
band set of Sentinel-2 Level-2A products for separating snow, cloud and background. It
should be noted, although we re-sampled each band to the highest 10 meter resolution, the
original resolutions for B2 and B4 are 10 m, B11 is 20 m and B9 is 60 m.
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Figure 9. Feature selection. (A) Forward sequential feature selection, where the tick name of the
x-axis means sequentially adding the specified bands into the inputs of the model. (B) Backward
sequential feature selection, where the tick name of the x-axis means sequentially removing the
specified bands from the inputs of the model.

3.4. Performance Comparison for RF Models with Various Band Combinations

We trained three RF models, each with a different band combination as input, and
compared their performance in classifying snow, cloud and background. The three-band
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combinations are RGB bands (B4, B3 and B2), the informative four bands (B2, B11, B4
and B9) and all 12 bands (B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11 and B12). The
hyper-parameters of each random forest model were optimized independently by Bayesian
optimization to achieve each model’s best performance.

The comparison of four evaluation scores (precision, F1 score, recall and IoU) between
the three RF models is demonstrated in Figures 10 (on the training dataset) and 11 (on the
test dataset). The three RF models showed very close and good performance (all above
0.86) in predicting background pixels across all four evaluation scores. This is in line with
our previous observation that background pixels have distinct BOA reflectance distribution
compared to cloud and snow in each of the first ten bands (Figure 7). The most apparent
difference between the three models is that the RF model trained on RGB bands (RFRGB)
exhibited very poor performance in predicting both cloud and snow. For example, the
IoU of RFRGB in predicting cloud and snow are both below 0.35, and F1 scores are both
only around 0.5. These results demonstrate the RGB bands (i.e., B4, B3 and B2) do not
contain enough information to discriminate snow from cloud. This finding is also reflected
by the fact that snow and cloud share similar reflectance distribution patterns across the
three bands.

The RF model trained on the four informative bands (RF4bands) and the RF model
trained on all 12 bands (RF12bands) exhibited very close performance in predicting all three
classes, and they both significantly outperform the RFRGB model in predicting both cloud
and snow. The four bands input (B2, B11, B4 and B9) for RF4bands was selected by BSFS
to maximize the informative features and simultaneously minimize the number of bands.
The previous section (Figure 9) has demonstrated that the top 4 important bands combined
accounted for almost all the informative features in classifying the three classes. This
explains why RF4bands and RF12bands showed close performance and are much better than
RFRGB. A striking finding is that RF4bands is even marginally better than RF12bands in
classifying the three classes based on all four evaluation scores, except for the precision of
cloud and recall of snow. This may be due to the fact that the inclusion of more similar
or non-relevant bands may make the machine-learning model at higher risk of overfitting
on the training dataset, and this point is supported by the finding that RF12bands slightly
outperformed RF4bands in classifying all three classes across the four evaluation scores in
the training dataset (please refer to Figure 10).

3.5. Performance Comparison for U-Net with Various Band Combinations

In addition to the RF models, we also trained three U-Net models with RGB bands,
informative four bands and all 12 bands as inputs. Except for the input layer, all other
layers of the U-Net structure are the same for the three U-Net models. We then compared
their classification performance based on the four evaluation metrics.

Similar to the RF models, the three U-Net models achieved close and good performance
(all above 0.84) in classifying background pixels according to all four evaluation scores.
The U-Net model with informative four bands as inputs (U-Net4bands) and the U-Net model
with all bands as inputs (U-Net12bands model) also exhibited close performance in predicting
snow pixels and cloud pixels according to the four scores, even though the U-Net4bands
model slightly and consistently outperformed the U-Net12bands model. The U-Net model
with RGB bands as inputs (U-NetRGB) apparently fell behind U-Net4bands and U-Net12bands
in classifying snow and cloud in almost all evaluation scores, except that the three models
all achieved nearly perfect scores (all are greater than 0.987) on precision for cloud.
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Figure 10. Classification performance comparisons for different models applied in a training dataset
images (n = 34) based on (A) precision, (B) F1 score, (C) recall and (D) IoU. The bars with three
different colors, i.e., violet, green and blue, represent models with input subset made up of RGB
bands, informative four bands and all 12 bands, respectively. The bar without texture denotes random
forest model, while the bar with diagonal texture symbols U-Net model. Note: the evaluation was
performed on image level, therefore the validation dataset paths are also included.
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Figure 11. Classification performance comparisons for different models applied in testing dataset
images (n = 6) based on (A) precision, (B) F1 score, (C) recall and (D) IoU. The bars with three
different colors, i.e., violet, green and blue, represent models with input subset made up of RGB
bands, informative four bands and all 12 bands respectively. The bar without texture denotes random
forest model, while the bar with diagonal texture symbols U-Net model.

3.6. Comparison between Sen2Cor, RF and U-Net Models

We then compared the classification performance of Sen2Cor, RF and U-Net models.
In terms of overall accuracy, Sen2Cor gave very poor classification results (only 58.06%)
on our selected six test scenes, apparently falling far behind other models (Table 2). The
poor classification performance of Sen2Cor is also reflected in its generated classification
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masks, which are listed in the third column of Figure 12. The Sen2Cor misclassified almost
all cloud pixels in the first scene and most cloud pixels in the third scene into snow pixels;
it also misclassified many snow pixels, which are mainly located at the boundaries between
snow and background, in the last two scenes into clouds.
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Figure 12. Visual comparisons of the classification performance in six independent scenes for different
methods. Each row represents an independent test scene, and each column represents a different
method. Except for the plots in the first column, the three target classes are represented by different
colors, where black denotes background, red denotes cloud and cyan denotes snow.

Table 2. Overall accuracy of different models.

Overall Accuracy (%) Sen2Cor RF U-Net

RGB - 69.06% 87.72%
Informative 4 bands - 90.03% 93.89%
All 12 bands 58.06% 89.65% 93.21%

The three U-Net models all clearly outperformed their corresponding RF models. The
greatest improvement came from the comparison between RFRGB and U-NetRGB. The
overall accuracy for RFRGB is 69.06%, while it significantly increased to 87.72% using U-
NetRGB which is even closer to the performance of RF12bands (89.65%). As with Sen2Cor,
RFRGB misclassified almost all cloud pixels in the first scene into snow; however, U-NetRGB
managed to correctly classify around 80% of the cloud pixels in the first scene. Both RFRGB
and U-NetRGB tend to predict all snow and cloud pixels in the third scene as snow pixels.
Furthermore, RFRGB misclassified a lot of cloud pixels in the second scene and the fourth
scene into snow and predicted many snow pixels in the last scene as cloud pixels, while
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U-NetRGB does not have such issues (Figure 12). The above results indicate that the pure
pixel-level reflectance from the RGB bands does not contain enough informative features to
discriminate snow from cloud; the additional addition of spatial information as employed
by U-Net model greatly improved the classification results.

Even though the overall accuracy of RF4bands and RF12bands reached around 90%,
which is a huge improvement over RFRGB, they still both misclassified many cloud pixels
into snow in the first and fourth scene. U-Net4bands and U-Net12bands further increased
the overall accuracy to above 93%, and with U-NetRGB they all avoided such “cloud
to snow”misclassification issues in the fourth scene, U-Net4bands even further uniquely
correctly classified all cloud pixels in the first scene (Figure 12). U-Net4bands achieved the
highest overall accuracy of 93.89%, and this, combined with its outstanding score in the
other four evaluation matrices (Figure 11), makes it the best model among the six models
we have studied to do snow mapping for Sentinel-2 imagery.

4. Discussion

Snow coverage information is important for a wide range of applications. In agricul-
ture, in particular, accurate snow mapping could be a vital factor for developing models
to predict future disease development. However, accurate snow mapping from satellite
images is still a challenging task, as cloud and snow share similar spectral reflectance
distribution (visible spectral bands in particular), and therefore they are not easily dis-
tinguishable. To our best knowledge, there is no large annotated satellite image dataset
especially for the task of snow mapping that is currently publicly available. Although
Hollstein et al. [16] manually labeled dozens of small polygonal regions from scenes of
Sentinel-2 Level-1C products across the globe at 20 m resolution, the small isolated irregu-
lar polygons are not useful enough to train convolutional neural network-based models.
Baetens et al. [20] annotated 32 scenes of Sentinel-2 Level-2A products in 10 locations at
60 m resolution; however, they were mainly focused on generating cloud masks, and snow
has very limited representation. As a result, we carefully collected and labeled 40 scenes
of Sentinel-2 Level-2A products at the highest 10 m resolution, which includes a wide
representative of snow, cloud and background landscape across the globe. The proposed
database would on the one hand be used to evaluate the performance of different snow
prediction tools, and on the other hand enable the future development of more advanced
algorithms for snow coverage mapping.

Threshold tests-based tools (such as Sen2Cor) could be used to make fast and rough
estimations of snow or cloud. However, our results have demonstrated that they can be
misleading under some circumstances. In particular, Sen2Cor tends to mis-classify the
cloud under a near-freezing environment temperature into snow, such as the case in the
first and fourth scene of the test dataset (Figure 7). The thin layer of snow located in the
junction between snow and background are also often misclassified to be cloud. Thus,
accurate snow coverage mapping requires much better snow and cloud classification tools.

The Sentinel-2 Level-2A product includes 12 BOA-corrected reflectance bands. Our
results show that no single band can provide clean separations between snow, cloud and
background; each of the 12 bands may contain redundant or unique features that are useful
to classify the three classes. Including too many features, such as including all 12 bands,
may easily lead to overfitting on training data for most machine-learning and deep-learning
algorithms, especially when the training dataset is not large enough. Thus, identifying
the optimal band combination that contains most of the informative features while also
containing a few bands is essential. Our forward feature selection and backward feature
selection both agreed B2 (blue) is the most important band to separate the three classes.
The combination of B2, B11, B4 and B9 reserves almost all informative features among
all 12 bands for separating the three classes. Therefore, our results provide guidance for
selecting bands for the following studies aimed at developing better snow-mapping tools.

Random Forest as the representative traditional machine-learning algorithm provides
much better classification performance than the threshold test-based method Sen2Cor,
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especially when feeding the RF model with the four informative bands or all 12 bands.
However, all three RF models have the issue of “salt-and-pepper” noise on their classifica-
tion masks [32]. This issue does not only reflect the high variance of spectral reluctance
values of each band within the three classes but also reflects the limitations of the tra-
ditional machine-learning algorithms. Traditional machine-learning algorithms, such as
RF, only use pixel-level information, i.e., the reflectance values of each band for the same
pixel, to make class predictions. They failed to make use of the information from the
surrounding pixels or the broad spatial information. In contrast, the convolutional neural
network-based deep-learning models such as U-Net exploit the surrounding pixel infor-
mation by convolution operations and take advantage of the broad spatial information by
repeated convolution and pooling operations. Therefore, the U-Net models all bypass the
“salt-and-pepper” issue and give even better classification performance than the RF models.

The important role of spatial information in distinguishing snow and cloud is further
highlighted when comparing classification performance between U-NetRGB and RFRGB.
The large overlaps of the reflectance distribution of the RGB bands between snow and cloud
and the poor classification performance of RFRGB demonstrate that pixel-level information
of only RGB bands contains very limited features that can be used to separate the three
classes. In contrast, U-NetRGB, also only fed by RGB bands but incorporating spatial
information by the neural networks, can achieve significant improvements in classification
performance compared to RFRGB. This raises an interesting open question for future studies,
i.e., with a larger training dataset and improved neural network algorithms, is it possible to
build satisfactory models with inputs of only RGB bands?

In terms of practical applications, although we have demonstrated that the U-Net
model fed with the four informative bands (RF4bands) achieved the best prediction perfor-
mance in our test dataset, and is much better than Sen2Cor and RF models, we should
acknowledge that the efficient execution of deep-learning models often requires advanced
hardware (e.g., GPU) and higher computation demands, thus making it less convenient to
implement than the threshold test-based methods. However, with technology development
and algorithm evolution, the application of deep-learning models in satellite images will
become mainstream in the future.

5. Conclusions and Future Work

This work investigates the problem of snow coverage mapping by learning from
Sentinel-2 multispectral satellite images via conventional machine- and recent deep-learning
methods. To this end, the largest (to our best knowledge) satellite image dataset for snow
coverage mapping is first collected by downloading Sentinel-2 satellite images at differ-
ent locations and times, followed by manual data labeling via a semi-automatic data
labeling tool in QGIS. Then, both a random forest-based conventional machine-learning
approach and a U-Net-based deep-learning approach are applied to the labeled dataset
so that their performance can be compared. In addition, different band inputs are also
compared including a RGB three-band image, selected four bands via feature selection,
and full multispectral bands. It is shown that (1) both conventional machine-learning and
recent deep-learning methods significantly outperform the existing rule-based Sen2Cor
product for snow mapping; (2) U-Net generally outperforms the random forest since both
spectral and spatial information is incorporated in U-Net; (3) the best spectral band combi-
nation for snow coverage mapping is B2, B11, B4 and B9, even outperforming all spectral
band combinations.

Although the results in this study are very encouraging, there is still much room for
further development. For example, (1) in terms of data source, more labeled images from
different locations and under diverse background conditions are required to generate a
more representative dataset; (2) in terms of algorithm, the representative machine-learning
algorithm (e.g., random forest, U-Net) are compared to obtain a baseline performance
in this study, and more advanced deep-learning algorithms should be further consid-
ered/developed to further improve the performance; (3) in terms of practical application,
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a supervised learning approach is adopted in this study, and semi-supervised or even
unsupervised algorithm should also be exploited so that the workload on data labeling can
be significantly reduced.
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