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Abstract: Reinforcement learning algorithms applied to social dilemmas sometimes struggle with converging to mutual
cooperation against like-minded partners, particularly when utilising greedy behavioural selection methods.
Recent research has demonstrated how affective cognitive mechanisms, such as mood and emotion, might
facilitate increased rates of mutual cooperation when integrated with these algorithms. This research has,
thus far, primarily utilised mobile multi-agent frameworks to demonstrate this relationship - where they have
also identified interaction structure as a key determinant of the emergence of cooperation. Here, we use a
deterministic, static interaction structure to provide deeper insight into how a particular moody reinforcement
learner might encourage the evolution of cooperation in the Iterated Prisoner’s Dilemma. In a novel grid
environment, we both replicated original test parameters and then varied the distribution of agents and the
payoff matrix. We found that behavioural trends from past research were present (with suppressed magnitude),
and that the proportion of mutual cooperations was heightened when both the influence of mood and the
cooperation index of the payoff matrix chosen increased. Changing the proportion of moody agents in the
environment only increased mutual cooperations by virtue of introducing cooperative agents to each other.

1 INTRODUCTION

Models of human social behaviours, and the socio-
cognitive mechanisms that underlie them, have be-
come a fast focus of researchers in the field of com-
puter science in recent years. In particular, they are
of interest both for the improvement of existing algo-
rithms (such as for the focusing of attention in visual
search; Belkaid et.al., 2017) but also in investigating
individual and group behaviours (social network sim-
ulacra being one example). One testing ground for the
development of such artificial mechanisms are social
dilemmas, as they are relatively well understood, sim-
ple and easy to constrain or build on. They provie a
good baseline of feedback on the efficacy of our arti-
ficial structures in altering behaviour, and have been
studied enough in social and psychological literature
that there is sufficient, informative comparable data.
It therefore stands that each framework research pro-
duces with a basis in human structure should be eval-
uated with this in mind.

This work builds on previous research on how typ-
ically reward-focused reinforcement learning (RL) al-
gorithms, utilised by a network of agents engaged
in the Iterated Prisoner’s Dilemma (IPD), can be al-
tered using computational socio-cognitive models to
encourage increased cooperation. One of the newer
of these in recent literature has been a model of mood,

with research suggesting that a key determinant of
the emergence of cooperation within moody dilemma
playing is the interaction environment (or network
structure; Collenette et.al., 2017a). The model has
so far been tested primarily in mobile networks of
moving agents; we instead seek to more clearly es-
tablish how a static and more standardised structure
of interaction affects the moody model’s influence
on cooperation. The main objective of this paper
is to find methods of increasing cooperation in RL
agents playing the IPD. To do this, we evaluate the
behaviour of moody learning agents in a static, reg-
ular, multiagent environment whilst playing against
more traditional RL agents - data on which has not
been explicitly presented in past research. We first
summarise the published research on a human-based
model of mood and then examine how behaviour ob-
served in the novel environment compares. We hy-
pothesised that results may follow the data in Col-
lenette et.al. (2017a), and demonstrate that increased
interaction rates dampen cooperation gains, but still
show an increase in cooperation over unaltered RL.
We also investigate two additional factors for in-
creasing cooperation rates; the proportion of oppo-
nents in the environment and a measure of how co-
operative the reward schema is. Results of our sim-
ulations demonstrated that cooperation can indeed
be increased by the latter of these factors by up to



15%, whereas the former does not. Our experimen-
tal data are discussed in the context of structures of
interaction, the variables the model utilises, and pos-
sible changes the model’s implementation may need
in this environmental setting. The primary contri-
butions of this research are that we provide direct
evaluation of the moody strategy in static networks
(previously undetailed), test the moody model against
varying quantities of traditional RL opponents to eval-
uate behavioural transference, and test varying payoff
matrices which facilitate comparisons with external
human participant data. The code repository for this
paper is available at Feehan (2021).

Beginning with Section 2, we outline the compu-
tational problem space covered by the IPD, and the
justification for using it in uncovering social agent be-
haviour. We also describe the RL algorithm SARSA,
and introduce the notion of interaction structures and
how this relates to the moody model to come. Then, in
Section 3 we describe this model of mood (mSARSA)
as it is primarily outlined in Collenette et.al. (2017b),
with deeper presentation of its relevant past perfor-
mance. We also provide the motivation, based on this
literature, for our own experiments. Section 4 pro-
vides the detail of the novel testing environment, pa-
rameters and hypotheses. Finally, Section 5 gives the
data from these experiments, and Section 6 gives the
subsequent analysis, comparisons and conclusions.
Thereafter we propose suggestions for the improve-
ment of the model.

2 Background

2.1 Prisoner’s Dilemma

The Prisoner’s Dilemma is a social dilemma in which
players have two behavioural choices available to
them, and typically must choose without direct com-
munication. Cooperate with the partner, and poten-
tially be exploited, or defect (play selfishly) against
the partner, which (if mutual) will lead to a lower
round payout than with mutual cooperation. The
Nash Equilibrium of the dilemma, due to the payoff
structure (Table 1), is to defect - but if both players
opt to do this, their score is diminished in compari-
son with what could be achieved. In addition, when
the game is played over many rounds (as in the IPD),
several issues arise. The strong incentive to defect
leads networks to obtain substantially lower payoffs
as a whole than sustained mutual cooperations would
provide. There is also a range of problems involving
how to encourage partners to both trust and continue
playing the game with you when you repeatedly de-

Table 1: Payoff matrix for the two-player Prisoner’s
Dilemma game, as used in Collenette et.al. (2017b) and
throughout classic literature. The cooperation index of this
matrix (see Section 3.3) is 0.4.

Partner B (Right)
Cooperate Defect

Cooperate 3,3 0,5Partner A
(Left) Defect 5,0 1,1

fect (Wilson and Wu, 2017). This lends itself to the
motivation for finding mechanisms that encourage the
evolution of cooperation in artificial agents.

The payoff values presented in Table 1 have been
used extensively throughout IPD research under dif-
ferent names; Temptation (or T) for a DC outcome,
Reward (or R) for a CC outcome, Punishment (or
P) for a DD outcome and Sucker (or S) for a CD
outcome. In our work, we also refer to these as the
Exploiter, Mutual C, Mutual D and Exploited payoffs
respectively as they provide simpler intuition.

Overall, we find a suitable research environment
given two reasons. Firstly, there is well-established
precedent that human networks playing the game do
not defect in the same manner as many game-playing
strategies (0), and are more heterogeneous in their be-
haviours (Fudenberg et.al., 2012). Secondly, there is
large potential for artificial players to improve from
payoff-incentivised defection with the introductions
of novel additions (as they can already display greedy
behaviour; Collenette et.al., 2017b). RL algorithms
such as SARSA have been used to learn behavioural
policies for the IPD (Collenette et.al., 2017b; Yu
et.al., 2015; Gao, 2012), and in general are of inter-
est to computational neuroscience regarding human
behaviour (Lin et.al., 2019; Shteingart et.al., 2014);
making them a suitable methodology for investigat-
ing humanlike cooperative behaviour. In the follow-
ing section, we detail SARSA as it relates to social
agent research, and then in Section 4 we outline how
it has been extended further with a moody model, not-
ing additional factors that may influence cooperation
behaviour.

2.2 Interaction Structure

One of the primary sources demonstrating the effect a
model of mood has on the emergence of cooperation
within social dilemmas is Collenette et.al. (2018),
a study which concludes that the structure of net-
work connections and interactions influences how be-
haviours emerge in said network. Here we will out-
line some of the terminology involved and how each
relates to the research at hand. Interaction structures
can be defined as the way agents interact with each
other; in the context of the IPD, interactions occur
between two players when they play a round of the



dilemma game. In our experiments and in much of
the research summarised in Section 3, this is extended
to involve multiple pairs of players in a group, or a
network. Networks can be given in the form of a
graph, where agents in these networks are represented
as nodes and interaction relationships between agents
are represented as edges between nodes. There are
two main forms of network related to the current re-
search (mobile and static), and there are many struc-
tural variations on the graph which represents how
well connected agents are.

In the mobile environments used in the majority of
the model literature, agents move freely around are-
nas with placed obstacles (dependent on the network
type), intending to replicate the dynamic and uneven
interactions experienced by more natural societal net-
works. These environments have equivalent static
networks with differing topographical structures; in
Collenette et.al. (2018), for example, the authors in-
clude small world (characterised by high clustering),
fully connected (where all nodes are connected to all
other nodes), random (as the title suggests) and reg-
ular networks (where each node has the same num-
ber of edges). The equivalent network in our own
experiments would be a static regular network. As
the literature discussed here describes the effect of
increasing mobility, and there is some disagreement
amongst the papers on the effect of network structure,
evaluating both SARSA and mSARSA in a static regu-
lar network may add more clarity to structural effects.
In the learning algorithm SARSA, the agent updates
world knowledge through having game interactions.
This makes the nature of those interactions, how many
interactions agents have in the course of a learning
episode, and what information those interactions pro-
vide, critical to agent learning.

2.3 SARSA

State-action-reward-state-action (SARSA) is an on-
policy RL algorithm, and is one that is used through-
out the literature pertaining to the mood model dis-
cussed here. States, in the case of default SARSA as it
is used in this paper, are the histories of interactions
with each partner - the length of which depending on
the memory size afforded to the agent. In our imple-
mentation, up to seven items can be remembered or
for larger items (like the memory of what both play-
ers did), 3 or 4 ‘chunks’. Actions are the behaviours
available (i.e. cooperate or defect), and rewards are
given by the payoff matrix used, depending on the
outcome of each individual interaction. Both the de-
fault SARSA and the mSARSA variant use the ε-greedy
behaviour selection mechanism. Algorithmic details

and pseudocode for SARSA can be found in Sutton
and Barto (2018). The equation for updating Q (the
learned value) for each state-action combination is
given below as it is pertinent for comparison with the
mood-augmented version presented in Section 3.1.

Let s represent the state, t denote the current
timestep of a learning epoch, a the action taken in that
state, where α is the learning rate (typically 0.1), γ is
the discount factor (typically 0.95), and r is the reward
received:

Q(st ,at) = Q(st ,at)+
α[rt+1 + γQ(st+1,at+1)−Q(st ,at)]

(1)
Originally selected due to its on-policy nature

conforming with the on-policy characterisation of
mood (Collenette et.al., 2017b), it has the added ben-
efits of being well-established, easy to implement and
computationally light when the state space is smaller
(Collenette et.al.’s methodology yields approximately
216 states, for instance). Application of reinforce-
ment learners is of interest to those researching ar-
tificial social and cognitive mechanisms in humans;
Shteingart et.al. (2014) discusses the benefits of
model-free temporal difference learners as practical
methodologies for examining and recreating human-
like behaviour, but also the potential lack of intricacy
and depth that model-free algorithms have when at-
tempting to recreate behaviour altered by chemical
neuromodulation (perhaps particularly of relevance to
mood and emotion modelling).

Still, Q-learners are being pursued as viable meth-
ods to model different variations of human processing
(as in Lin et.al., 2019) and continue to be of use to in-
terdisciplinary research. Bearing these limitations in
mind, we can consider how augmentations to SARSA
may also begin to pursue more complex humaniform
modelling. One particular field of interest in regards
to this is mood, where there exists a large body of lit-
erature on how mood influences dilemma reasoning
(Palfai et.al., 1993) and cooperative behaviour (Proto
et.al., 2017; Hertel et.al., 2000). We will cover one
particular computational model of mood that has been
integrated into the SARSA learning algorithm.

3 Related Literature

3.1 Mood Model and Integration with
SARSA

Mood is reliably, if reductively, defined as a task- and
partner-invariant affect spectrum which influences



other cognitive processes, dissociated more from cur-
rent events with longer-term effects (Collenette et.al.,
2017b). It is a closely interdependent subsystem with
emotions1 and biases many aspects of human percep-
tion.

The moody mSARSA model under analysis here is
primarily outlined in Collenette et.al. (2017b), and
employs a central mechanism by which mood is an
integer scale between 1 and 100. Higher mood values
are coded as more risky and cooperative, with lower
moods as more rational and defective; in Collenette
et.al., extreme moods (above 90 and below 10) are
implied as characterising mood disorders (mania and
depression, respectively). Mood updates are made
solely around how an agent perceives its current pay-
off (which is adjusted using the Homo Egualis model,
comparing the reward with the opponent’s reward;
Fehr and Schmidt, 1999), relative to the average pay-
off previously attained. If an agent perceives itself to
be doing poorly in comparison with its past, its mood
will decrease. In Collenette et.al. (2018), this process
is slightly adjusted to facilitate higher moods decreas-
ing more readily (in line with the ease of fluctuation
at lower moods). The mood-altered equation for up-
dating Q for each state-action pair is provided below
(adopted from Collenette et.al., 2017b).

Q(st ,at) = Q(st ,at)+α[rt+1 + γΨ−Q(st ,at)] (2)

The rule for the estimation of future rewards (Ψ)
is encapsulated in Equations 3 through 5 (reproduced
from Collenette et.al., 2017b), where mt

i is the mood
of a given agent i at timestep t (a R between 0 and
100). Mema

i is the vector of the set of rewards previ-
ously obtained by that agent when using action a, and
|Mema

i | is at maximum 20. Mema
i (0) returns the most

recent reward.

α
t
i = (100−mt

i)/100 (3)

β
t
i = ceil(|Mema

i (n)|/α
t
i) (4)

Ψ = (n
β

∑
0

Mema
i (n))/β

t
i (5)

Mood constrains the depth (denoted with n above)
at which memory is consulted for the average past re-
ward, but also controls the value ε in ε-greedy explo-
ration. When an agent’s mood is below 30 and they
cooperate, or above 70 and they defect, ε increases to
0.9 for that turn and a move is re-selected. Mood is
updated and maintained by the series of Equations 6

1Emotions (which are more temporally distinct, varied,
and can be task-relevant; Zulfiqar et.al., 2017) also have
an influence on decision-making; despite their relevance,
however, emotions are extraneous to the scope of the current
paper.

through 8 (reproduced from Collenette et.al., 2017b).
Let t denote the current timestep of a learning epoch,
pt

i return the payoff of agent i in that timestep, µt
i de-

note their average payoff over the elements in Mema
i ,

and mt
i denote their mood. Let j denote agent i’s op-

ponent, and let α = β (as in Collenette et.al., 2017b):

α
t
i = (100−mt

i
−1)/100 (6)

Ωi,
t
j = µt

i−αt
i ·max(µt

j−µt
i ,0)−

βt
i ·max(µt

i−µt
j,0)

(7)

mt
i = mt

i
−1 +(pt

i−µt
i
−1)+Ωi,

t
j
−1 (8)

Algorithm 1: mSARSA Pseudocode
(Adopted from Collenette et.al., 2017b)

initialise all Q(states, actions) arbitrarily;
for each episode do

initialise all states;
Choose an action using the policy derived

from Q (ε-Greedy);
for each episode step do

Take the chosen action, observe the
reward and the new state reached;

if mood ≥ 70 and action = ‘D’ OR mood
≤ 30 and action = ‘C’ then

re-select an action under a higher ε

value (0.9)
Choose next action using the policy

derived from Q (ε-Greedy);
Estimate future reward using Equations 3

through 5;
Update Q(s, a) using Equation 2;
Update mood using Equations 6 to 8 ;

Until terminal step;

As Algorithm 1 demonstrates, moody alterations
to the standard SARSA framework are mostly additive,
with the exception of one variable replacement in the
Q-update equation. At each stage of learning mood
value is considered, creating an all-permeating inte-
gration to decision-making. The purpose of the sys-
tem design is a thoughtful combination of a few moti-
vations: it models evidence-based mood in a learner,
where previous focus had been primarily on models of
emotion; it intends to expand understanding on how
human-like mood (and emotion, where applicable) in-
forms decisions in social dilemmas; and it appears to
facilitate increased rates of cooperation in certain sit-
uations, as we will evidence from past research.

One final important aspect of the algorithm to note
is that Equation 8 provides the first iteration of the
mood update function (MU1) that is utilised in Col-
lenette et.al. (2017b), which this paper will make a



direct comparison with in terms of data. There is a
second iteration of this equation (MU2, see Equation
9), which was developed and deployed in Collenette
et.al. (2018) to facilitate faster mood changes when
poor outcomes are received at higher mood levels.

mt
i = mt

i
−1 +(pt

i
−1−Ωi,

t
j
−1) (9)

It is important to note that our implementation
uses the former of these equations (Equation 8) in its
calculations, for two main reasons. First, it means
we utilise the exact structure of the version used in
Collenette et.al., (2017b), which is the only source of
precise cooperation data for the algorithm specifically
(and not a mixed population as a whole, as presented
in Collenette et.al., 2018). Secondly, initial testing
with MU2 indicated that it took a lot longer for the
algorithm to run to conversion - if at all, as it poten-
tially exhibited cyclic behavioural loops. It did, how-
ever, manipulate the mood value much more effec-
tively than MU1 appeared to do, with the behaviour
of both possibly exaggerated by the nature of our en-
vironment used. Though full details on our observa-
tions cannot be evaluated here due to constraints, this
may be examined in further work - the limitations and
critique of MU1 where it is relevant to the current ex-
periments are detailed clearly in Section 6.

3.2 Moody versus Non-Moody

Firstly, it is quite apparent that the addition of the
mood model in previous research scenarios is a posi-
tive one; networks with moody agents achieve greater
proportions of mutual cooperation at behavioural con-
vergence than their non-moody (or even emotional)
counterparts. Moody agents do not necessarily al-
ways attain the greatest utility2 but the mechanism
does seem to reduce the self-interest of otherwise
greedy SARSA agents. These agents are typically ren-
dered using Stage (Vaughan, 2008) and perform ran-
dom walks, usually in an environment with central ob-
stacles. On encountering an opponent, they perform
a round of the Prisoner’s Dilemma (or other game, as
relevant) and then move on. It is worth bearing in
mind this setup throughout the following analysis, as
the authors repeatedly comment on how reduced rates
of uncertainty in repeated interaction introduces diffi-
culty in sustaining cooperation and removes the threat
of punishment for defecting.

Initial work combining the mood system with the
Ortony, Clore and Collins (OCC) Model of Emotions

2In Collenette et.al. (2018), Tit-for-Tat was identified as
the most successful strategy despite differing environments
and network structures.

(Ortony et.al., 1988; Clore and Ortony, 2013) demon-
strated a high rate of effectiveness in the IPD. In Col-
lenette et.al. (2017b), a three-emotion framework saw
an increase in the peak proportion of mutually coop-
erative outcomes from approximately 35% to 100%
in some scenarios when the mood model was added.
With the scenarios representing different proportions
of starting moods (between low, neutral and high)
in the environment, it is clear that in initial testing
high mood networks happily cooperate with one an-
other. As discussed later in the paper, however, these
are not resilient outcomes, and are vulnerable to ex-
ploitative crashes against pure defectors (versus low
mood groups). In these resilience tests, the percentage
of mutual cooperation rose at best by approximately
16%, which is still a marked improvement over the
5% initial rate. This paper also demonstrates the pos-
itive visual correlation between mood value and per-
centage of mutually cooperative outcomes, with both
rising steadily as more interactions occur.

In a highly mobile environment, the model facil-
itated an increase in the proportion of mutually co-
operative outcomes by at least 40% over the SARSA
equivalent; both when opponents were recognisable
and when their mood labels were directly observable
(Collenette et.al., 2017b). This increase was even
greater when agents possessed no information about
their opponents, with regular SARSA agents attain-
ing only 1.7% mutually cooperative outcomes and
their moody counterparts attaining (at greatest) 78%.
There were equivalent decreases in the proportion
of mutually defective outcomes in these conditions
where mSARSA performed well.

In more explorative network research, the model
was included amongst a very wide variety of other
strategies in a broader selection of topologies. In Col-
lenette et.al. (2018), though there is no per-strategy
breakdown provided in the data regarding coopera-
tion or utility gathered, mutual cooperation was main-
tained at approximately 49% in a mixed strategy en-
vironment. Importantly, this paper draws several
key conclusions about the effect network connectiv-
ity (and the equivalent physical environments) has on
both cooperation and dilemma playing. Networks
with random connectivity facilitate the greatest pro-
portion of mutual cooperation and average payoffs to
agents, with the mobile environment equivalent pro-
viding the same in terms of cooperation, but perform-
ing only approximately as well as the empty and small
world environments. Though the effect on the mood
model specifically is unknown due to lack of strategy-
by-strategy breakdown by the authors, it is impor-
tant to note that our environment is most compara-
ble with the regular static network in Collenette et.al.



(2018) (the mobile equivalent of which is utilised in
the majority of the tested environments across the pa-
pers discussed). In the terms of connectedness, the
regular static network performed second worst out of
the four constructions (demonstrated lower coopera-
tion and lower average payoff attained) but attained
higher scores on both metrics in comparison to its mo-
bile equivalent.

One final paper, Collenette et.al. (2017a), com-
bines two of these methodologies - the emotional-
moody non-learning model and a variety of differ-
ent network types, similar to Collenette et.al. (2018).
Again, mood shows a strong positive influence on co-
operation levels over just the OCC framework alone.
Emotional agent networks sustained cooperation al-
most regardless of length of interaction, with starting
level of cooperation having a much larger effect than
the distribution of admiration thresholds (one of the
three emotions used) on the level of cooperation in
the system. Most of the results where initial cooper-
ation was set to 50% resulted in mutual cooperation
proportions within the range of 25% to 40%. On the
other hand, the inclusion of mood increases this range
to between approximately 82% to 100%. Resilience
results are similar to those seen in Collenette et.al.
(2017b), demonstrating low moods as more resistant
to pure defectors in the long run.

3.3 Cooperation Index

Throughout the moody algorithm literature, it appears
that variations on the traditional payoff matrix (Ta-
ble 1) have not been tested. This is potentially an
important factor for an algorithm modelling human-
like traits, as there exists work that demonstrates how
relational differences between the payoffs influences
human cooperation rates in the IPD. In Wrightsman
et.al. (1972), the authors summarise and discuss ini-
tial research into a cooperation index (henceforth re-
ferred to as K, as in Colman et.al., 2018), or for-
mula for characterising the intensity of the conflict
the structure of the payoff matrix creates. This text
is rather old, but summarises past work regarding hu-
man interactivity with K well; namely, cooperative
behaviour appears to increase as K increases, with
less clear-cut conclusions made regarding its influ-
ence on defections (something the authors suggest
is primarily influenced by the T payoff alone). The
equation for K, where each input has been defined
previously in Section 2.1, is given in Equation 10.

K = (R−P/(T−S) (10)

Other research continues to use K to evaluate pay-
off matrices with humans and compare it to other

models. Hristova et.al. (2005) is a discussion of the
strength of K as a cooperation predictor when val-
ues of K are distributed from 0.1 to 0.9. The authors
again found a consistent increase of cooperation as K
increased, and an influence of contextual K (that is,
playing other IPD games with high K values around
a specified target game with a differing K) on coop-
eration levels. The authors also create a computa-
tional model that utilises subjective expected utility
theory, combined with weightings for the importance
of each outcome type (calculated via average of past
payoffs) to replicate the trends shown in the human
data, with success. Colman et.al. (2018) reiterates the
human conclusions from this previous work in one of
the most recent references to K, providing solid basis
of connection between K and cooperation.

3.4 Summary and Literature Gap

The evidence discussed thus far indicates that the
model has a strong propensity for inducing mutual co-
operation between homogeneous agents, with indirect
data suggesting it possibly assists in the formation of
a stable level of cooperation in heterogeneous strate-
gical groups. It has been flexibly combined with RL
and frameworks of emotional behaviour alike, and in
both cases has allowed for the increase in coopera-
tion. Highly connected networks reduce the effective-
ness of the model as opposed to randomly connected
networks, and with mobility added on top of this, co-
operation is even further diminished in mixed groups.
There is also evidence to suggest that in homogeneous
groups, the influence of network orientation is much
less important than variables such as starting mood
(though this is in non-learning populations).

Overall, there is a lack of specific, isolated data
on the performance of the moody learner in a static,
homogeneous environment with regular connectivity,
and no data whatsoever on how moody agents behave
in environments with varying distributions of oppo-
nents or different payoff matrices. The experimen-
tation in Section 4 seeks to rectify this. For these
reasons, we will test mSARSA against itself, repli-
cating the parameters thoroughly tested in Collenette
et.al., (2017b) but under a more consistent interaction
structure. We will also substantially evaluate the two
contributing factors outlined (opponent density and K
value) in order to provide a thorough examination of
behavioural outcomes. If we can establish a baseline
of whether mSARSA behaves similarly and reliably in
our environment in comparison with mobile counter-
parts, we then not only lend weight to the model’s
robustness, but also set precedent for further experi-
mentation.



4 Experimental Evaluation

4.1 Design

The environment used for all three of the following
experiments is a regular 2D grid network of 25 agents
who do not change positions between rounds. Grid
positions begin from the bottom left (pos. 1) and in-
crease vertically northwards, filling out each column
before moving to the next (i.e. top left is pos. 5, top
right is pos. 25). In a single round of the IPD, agents
interact with as many available partners in the four
von Neumann neighbourhood positions, north, south,
east and west (clockwise, in this order). In Interac-
tion Structure experiments, all agents in the grid are
of the same strategy (mSARSA or SARSA). In Strat-
egy Proportion, most agents in the grid are initially
SARSA, with the proportion of agents increased grad-
ually as documented in Table 2. In Payoff Schema,
there are 12 mSARSA agents in the environment to 13
SARSA agents, using the F agent arrangement from
the previous experiment (Table 2).

This methodology was chosen as it is one of the
basic structures provided by MESA (Project Mesa,
2021), the simulation library used. Data presented are
the results of only the inner square grid of agents (ex-
cluding all border players) - this provides more stan-
dardised analysis as these agents will have the max-
imum of four partners. Each experiment consists of
5 learning episodes (experimental periods in which
internal variables are maintained), each consisting of
10,000 time steps. This value was chosen to compro-
mise between efficient runtime and allowing for any
late-phase change of behaviour. Data presented aver-
ages over these learning episodes.

4.2 Parameters

In the base experiment, mSARSA will be tested (as in
Collenette et.al., 2017b) using three levels of state in-
formation - the opponent’s last move, the opponent’s
ID, and the opponent’s mood label - each cumulative
with the last, under the names Stateless, Agentstate
and Moodstate. The parameter mA is intended to re-
flect the ‘extent to which mood influences behaviour’
(Collenette et.al., 2017b); this takes the form of alter-
ing moody behavioural thresholds chosen each round
and how epsilon is changed. We will test this pa-
rameter with values 0 through 0.8, in increments of
0.4. In the Strategy Proportion and Payoff Schema
experiments, mSARSA utilises just the Moodstate and
mA=0.8 parameters.

In the basic test of Interaction Structure, agents
solely play against opponents of their own strategy

in the grid. In the two experiments following this,
mSARSA agents play the IPD with SARSA agents. The
positions and proportions of agent types in the envi-
ronment for Strategy Proportion tests are outlined in
Table 2, with the Payoff Schema experiments utilising
the Condition F structure from this same table.
Table 2: Parameters used for the Strategy Proportion exper-
iment. The first row notes the grid locations of mSARSA
agents in each condition, and the second row displays what
percentage of the whole population the mSARSA agents oc-
cupy.

Condition A B C D E F G H

Grid
Locations 1 9

7,
9,
17,
19

1,
5,
21,
25

C,
D

E,
6,
10,
16,
20

F,
2,
4,
22,
24

G,
3,
11,
15,
23

Network
Proportion (%) 4 4 16 16 32 48 64 80

The independent variable changed in Payoff
Schema is the payoff matrix used, varied both in ac-
tual value size and in size of cooperation index (K)
- a measure used in both Wrightsman et.al. (1972)
and Colman et.al. (2018) (see Table 3). These can be
broadly categorised into three sections; small-value
payoffs (between 0 and 1) with small, medium and
large values of K, the traditional IPD payoff scheme
(Condition 4) and then large-value payoffs (between
0 and 100), again with small, medium and large val-
ues of K. This should provide some insight not only
into influence of increasing K, but also the actual
value of payoffs themselves. We also investigate the
influence of increasing K when the T and R payoffs
remain the same - the payoffs used in this portion
of the experiment can be found in Table 4. SARSA
utilises α = 0.1, γ = 0.95 and a linear decay mech-
anism for ε that starts at 0.99 and decays linearly to
0.1 mid-way through each episode. It also uses a state
information profile closest to Stateless with a single-
step memory.

Table 3: Parameters used for the first section of the Payoff
Schema experiment. Each column provides the payoff ma-
trix utilitsed in each numbered condition. K is the value of
the Cooperation Index for that payoff matrix column.

Outcome Payoff Value Used
Condition 1 2 3 4 5 6 7

T 0.8 1 1 5 99 56 99
R 0.6 0.9 0.9 3 52 37 98
P 0.5 0.1 0.1 1 51 16 1
S 0 0.6 0 0 0 14 0
K 0.12 0.50 0.80 0.40 0.10 0.50 0.97

4.3 Hypotheses

First and foremost, we wish to evaluate how mSARSA
performs in the environment detailed in Subsection
4.2. According to the conclusions of Collenette et.al.



Table 4: Parameters used for the second section of the Pay-
off Schema experiment. Each column provides the payoff
matrix utilitsed in each condition. K is the value of the Co-
operation Index for that payoff matrix column.

Outcome Payoff Value Used
T 52 52 52 52 52 52 52 52 52
R 51 51 51 51 51 51 51 51 51
P 50 50 48 49 49 48 44 43 33
S 42 47 42 47 48 47 42 42 32
K 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(2018), it is likely with the increased and determin-
istic interaction rate that any increase in the propor-
tion of mutual cooperations may be dampened in
comparison with past research. Given the model’s
overall success in mobile scenarios (Collenette et.al.,
2017b), we expect that increased mood will help raise
proportions of mutual cooperation in our own en-
vironment (over those of standard SARSA counter-
parts) even if this increase is smaller than in mobile
agent research. If we do observe increased propor-
tions of mutual cooperation (in comparison with stan-
dard SARSA), we expect that the model will uphold
similarly when tested with the parameters from Col-
lenette et.al., (2017b). As no prior direct data is avail-
able to make a prediction, we hypothesise that when
mSARSA is played directly against SARSA agents, it
may encourage SARSA to attain more mutually coop-
erative outcomes, based on the mixed-strategy results
of Collenette et.al. (2018). This may only be true,
however, after a critical proportion of mSARSA agents
are present in the environment; the Strategy Propor-
tion experiment serves to evaluate this hypothesis and
search for such value. Lastly, it has been shown in
previous research with human participants in the IPD
that increasing K appears to promote increased rates
of cooperation (see Wrightsman et.al., 1972; Colman
et.al., 2018)). We therefore predict that it is possi-
ble mSARSA may follow this trend, particularly given
that mSARSA utilises actual payoff values more exten-
sively than its competitors. The varying of actual pay-
off values (Conditions 1 through 3 versus Condi-
tions 5 through 7) will serve to evaluate if the K value
is purely responsible for any behavioural changes, or
if payoffs must be chosen carefully in terms of exact
values also.

5 Results

5.1 Interaction Structure

As the primary reference point for the analysis of
these data, we first summarise the result data of
the comparable conditions from Collenette et.al.,
(2017b).

Average proportion of mean cooperation (over the

Table 5: Proportions of Outcome Types (Mutual Defec-
tions and Mutual Cooperations, respectively) converged to
with 99% confidence intervals in the mobile environment
of past work, summarised from Collenette et.al., (2017b).
S column contains SARSA’s performance, taken from the
Agentstate condition (for comparison with our own SARSA
tests).

Mutual Defection
mA

State Info 0 0.4 0.8 S

Stateless 48.6%
±1.5

19.7%
±0.8

1.4%
±0.1

Agentstate 49.8%
±1.1

24.3%
±0.7

6.0%
±0.5

49.7%
±1.1

Moodstate 48.4%
±1.2

24.4%
±0.6

6.6%
±0.5

Mutual Cooperation
mA

State Info 0 0.4 0.8 S

Stateless 8.4%
±0.7

29.7%
±1.0

78.9%
±0.5

Agentstate 21.1%
±0.7

32.1%
±0.8

63.2%
±1.2

21.1%
±0.7

Moodstate 21.3%
±0.6

31.4%
±0.8

62.3%
±1.1

Table 6: Mean Proportions of Outcome Types (Mutual De-
fections and Mutual Cooperations, respectively) averaged
over the last 1000 rounds in the static environment of the
current experiments. S column contains SARSA’s perfor-
mance. * The [Agentstate, 0] condition did not converge on
a stable behaviour on any of the experimental trials.

Mutual Defection
mA

State Info
0

(SD)
0.4

(SD)
0.8

(SD)
S

(SD)

Stateless 85.13%
(0.24)

49.18%
(11.19)

27.54%
(6.98)

Agentstate 81.86%
(23.08)*

49.61%
(12.90)

26.54%
(6.83)

94.99%
(23.40)

Moodstate 85.43%
(22.52)

49.58%
(12.39)

26.80%
(6.63)

Mutual Cooperation
mA

State Info
0

(SD)
0.4

(SD)
0.8

(SD)
S

(SD)

Stateless 0.55%
(0.24)

9.33%
(2.87)

22.38%
(5.52)

Agentstate 2.89%
(4.39)*

9.52%
(3.44)

23.85%
(6.29)

0.07%
(0.04)

Moodstate 1.54%
(2.99)

9.36%
(3.36)

24.09%
(6.44)

last 1000 rounds) in the moody learning population
followed a similar trend as in the resultant original
data, if greatly reduced in actual value. The influence
of the Stateless condition does not seem to be present
in the static environment results as in the original
mobile data, aside from possibly influencing Mutual
Cooperations when mA is 0. An increase in infor-
mation to the learner generally produced a greater
proportion of mutual cooperation in interactions - as
did an increase in the value of mA. Mutual defections
similarly decreased as more information became
available and mA increased, reaching a point where
it was only slightly higher than mutual cooperation.
Importantly, the proportions of all outcome types
were approximately equal when mA=0.8; this is
observable in Table 6 with the similar levels of both
mutual defection and mutual cooperation, which
persisted through the non-mutual interactions also.



Figure 1: Summary graphs for mSARSA versus SARSA,
displaying mean proportion of outcomes in the last 1000
rounds across the experimental conditions given in Table
2. Error bars show one standard deviation from the mean.
Conditions A and D for mSARSA are marked as null as
mSARSA agents were not present in the analysis population.

At all levels, mSARSA performed more mutual
cooperations and less mutual defections than SARSA.
It also showed a higher preference for mutual de-
fection, and does not experience as many mutual
cooperations, at all condition levels compared to the
agents in Collenette et.al., (2017b). The results of a
two-way between-subjects ANOVA on the summed
mutual cooperation data from the last 1000 rounds of
each experiment showed a significant effect of value
of mA on the total amount of last 1000 rounds of
mutual cooperation reached (F (2, 396) = 868.68, p
< 0.01), and a significant (if weaker) effect of depth
of state information on the same (F (2, 396) = 3.29, p
= .0383). There no statistically significant interaction
effect present between the two (at a significance level
of p=.05).

5.2 Strategy Proportion

As the proportion of mSARSA increases in the envi-
ronment, SARSA’s proportion of exploitation of its
opponents increases. This increase is directly con-
nected to its interactions with mSARSA agents, as ev-
ident by the low proportion of DC outcomes when
the central SARSA agents are not in contact with any
mSARSA agents (see Conditions A and D, where
the analysed agents are not in direct contact with
mSARSA partners). It maintains a high proportion
of mutual defection throughout, as SARSA primarily
defects in our environment. In the mSARSA popula-
tion, the primary learned outcome types are mutual
defection and Sucker outcomes. As the proportion of
mSARSA in the network increases, mutual coopera-
tion and Temptation outcomes increase - in line with
the previous experiment where populations of entirely
mSARSA have equal proportions of outcome types.

5.3 Payoff Schema

Figure 2: Summary graphs for mSARSA versus SARSA,
displaying mean proportion of outcomes in the last 1000
rounds across the experimental conditions given in Table 4.
Error bars show one standard deviation from the mean.

For the basic comparison of increasing values of K
(whilst maintaining actual payoff values of the T and
R payoffs), it seems that mutual cooperation rises
in mSARSA agents (presumably with other mSARSA
agents, as the SARSA outcome proportions show no
such increase) as K gets larger. Mutual defections
similarly decrease, and the proportion of S payoffs ex-
perienced also increases - meaning that overall, when
K increases, mSARSA displays more cooperative be-
haviour to opponents. Outcomes T and P seem to be
most influenced when K>=0.7, whereas those of S
and R seem to change from approximately K=0.4.

With SARSA, it appears that behaviour is mostly
unaffected by the increase in K, except at high values
(e.g.K>=0.7). This coincides with the point at which
mSARSA begins to be exploited more often (presum-
ably due to an increase in the latter’s cooperative be-
haviour).

Figure 3: Summary graphs for mSARSA versus SARSA,
displaying mean proportion of outcomes in the last 1000
rounds across the experimental conditions given in Table 3.
Error bars show one standard deviation from the mean.

The change in outcome proportions experienced
by the two strategies varies both between the smaller
versus larger payoff values and as the value of K (the
cooperation index) changes (Figure 3).

For mSARSA, it seems both of these manipulations
to the payoff matrix has an influence on behaviour in
certain ways. As the value of K increases, propor-



tions of mutual defection decrease and proportions
of Sucker outcomes increase. Mutual cooperations
also increase, whereas proportions of Temptation out-
comes do not appear to show a consistently linear pat-
tern. Despite the classical payoff matrix having a K-
value of 0.4, it does not seem to fit in-trend just under
either of its K=0.5 counterparts (Conditions 2 and 6).
This is possibly due to the size of the payoff values
themselves in Condition 4, which are between 1 and
10 (as opposed to between 0 and 1, and 1 and 100
respectively for the other two categories).

When the actual value of payoffs are greater but
the values of K follow the same trend (minimal, mid-
dling and high), these trends for mSARSA appear to
be replicated but with greater exaggeration.

With SARSA, we see possible similar effects
with the mutual defection and Temptation outcomes,
but these differences may be purely reactive to the
greater changes in mSARSA behaviour. As coopera-
tive behaviour increases with payoff matrix change in
mSARSA, SARSA observes more Temptation payoffs
and slightly less mutual defections. As stated previ-
ously, this effect appears more exaggerated when the
payoff values themselves are larger. SARSA seems
fairly inoculated to changes in the payoff matrix in
our environment, with only small amounts of vari-
ation between conditions and almost none at all in
terms of mutually cooperative or Sucker outcomes.
As mSARSA takes payoffs as a greater factor in each
calculation (such as in the calculation of mood) how-
ever, it appears more influenced by its values and the
ratio of cooperative payoffs to non-cooperative pay-
offs (K).

6 Analysis, Comparison and
Discussion

In Collenette et.al., (2017b), the primary trends of be-
haviour observed for mSARSA included an overall de-
crease in the proportion of mutual defections at con-
vergence as the value of mA increased, with a like-
wise increase in mutual cooperations. The interaction
of state information is a little more complex. The ad-
dition of more information above Stateless seems to
keep mutual defections a little higher when mA gets
larger, but still largely below the proportion that nor-
mal SARSA mutually defects at. Conversely, addi-
tional information aids mutual cooperation at lower
levels of mA, but ultimately at the highest end (0.8)
an increase in information hinders the proportion of
mutual cooperations. Again, mSARSA still cooperates
much more frequently than SARSA. When we trans-
pose the algorithm into our environment, we observe

a similar, if compressed, trend to that of the original
data. The increased certainty and consistency of inter-
actions in our environment may have led to more ex-
treme proportions in both instances; for example, our
SARSA defects at twice the proportion of the SARSA
in Collenette et.al., (2017b), and mutually cooperates
almost 400 times less (comparing averages). In terms
of mutual defections, behaviour seemed largely unal-
tered by state information but followed the same trend
as in Collenette et.al., (2017b) regarding mA.

Despite similar trends emerging to earlier work,
however, the proportion of non-mutual outcomes
gives us greater insight into how the algorithm func-
tions here. Even though proportions of mutual de-
fection decreased, and mutual cooperations increased,
they evened out to similar proportions overall ( 25%)
- as did non-mutual outcomes. This ‘evening out’ of
all behaviours is unlike that observed in past work,
where mutual cooperation in mSARSA was the clear
dominant outcome. One possible explanation for
these observations comes from how the value of mood
changes within the algorithm in our environment. As
covered in the final paragraph of Subsection 3.1, there
are two possible equations to use for updating mood
for each agent - MU1 (from Collenette et.al., 2017b)
and MU2 (from later work; Collenette et.al., 2018).
The latter of these has no direct data available for
it (regarding mood changes or behaviour of the al-
gorithm specifically), and so is impractical to com-
pare against; it also exhibits cyclical behaviour of
both mood and resulting behavioural outcomes, tak-
ing many more cycles to attempt to attain convergence
(a primary limitation for our research in terms of time
and hardware availability). It does, however, appear
to provide mSARSA with the reactivity necessary for
more diverse behaviour in such a high-interaction en-
vironment. We observed that with MU1, mSARSA
agents rapidly increase in mood to maximum and then
very rarely fluctuate from that position (if they do,
the mood change is infinitesimally small). These ef-
fect may not have been observes in Collenette et.al.,
(2017b) due to the lower rate of interaction and the
lack of guarantee of interacting with the same part-
ner repeatedly. We opted not to utilise MU2 due to
reasons of practicality (after initial testing), but this is
certainly an avenue of future research worth pursuing.

In essence, agents in our own experiments were
therefore always operating at extremely high moods,
meaning that when any agent initially selects defec-
tion, a new behaviour is then re-selected under the
new, higher ε value (0.9), which is high enough to
lead to near-random behaviour selection. Data not re-
ported in Table 6 is that of the non-mutual behaviours
observed, which were at similar levels to both the



mutual outcomes - suggesting that behaviour is more
randomly selected during the ‘converged’ portion of
the experiment (at the very least, within the last 1000
rounds of each test). This is of important note to fu-
ture researchers who opt to use this algorithm, as an
uninformed selection of interaction structure and en-
vironment may lead to differing efficacy.

Effects of increasing the proportion of mSARSA
in the environment are relatively straight-forward. As
mSARSA has a comparatively high propensity to co-
operate, increasing the proportion of mSARSA agents
in the environment increases the likelihood it will be
exposed to agents of its own kind - this explains the
gradual increase of the mutually cooperative and ex-
ploited outcome proportions (the R and S payoffs re-
spectively). We can see this is the case from look-
ing at the SARSA data; in conditions where the anal-
ysed central group of agents were all made up of
SARSA agents that did not come into direct contact
with mSARSA agents (i.e. conditions A and D, where
mSARSA agents were in the outer corners of the grid).
In these conditions, SARSA’s proportion of T pay-
offs is as minimal as its other payoffs (as it primar-
ily plays with like agents, who also defect heavily).
As the proportion of more cooperative (mSARSA) op-
ponents increases, it finds more opportunities to ex-
ploit. When even 10% of grid agents utilise SARSA,
this significantly impacts the outcomes experienced
by mSARSA; they experience twice as many mutual
defections when there are some SARSA agents present
in the environment than when there were none (com-
pared with data from Interaction Structure). This may
suggest that mSARSA is particularly sensitive, in this
environment, to highly defective or pure-defective
partners. Our data also suggest that in our experi-
ments there was no migration of behaviour over time
(at least within the time frame of 10,000 rounds)
- in contrast to our hypotheses, the introduction of
mSARSA to an environment of SARSA did not encour-
age the latter to cooperate more.

One of the more interesting outcomes of the
three experiments dictated here is the interaction of
mSARSA with K, the cooperation index value. Where
we observed approximately 60% mutual defections
and 5% mutual cooperations in Strategy Proportion:
Condition F, when 48% of agents in the environment
were mSARSA, the alteration of the payoff scheme to-
wards a higher K facilitates half as many mutual de-
fections and four times as many mutual cooperations.
The standard payoff matrix (used throughout Strat-
egy Proportion tests) has a K value of 0.4, meaning
that the value of the payoffs themselves only appears
to have decreased the T proportion slightly, and in-
creased the R proportion slightly (in Figure 2 from

in Figure 1). Observing the consistent trend in human
research that an increased K leads to increased rates of
cooperation (Wrightsman et.al., 1972; Colman et.al.,
2018)), it is very positive to see that the more human-
like of the two learning algorithms reacts similarly.
The choice of payoff matrix therefore is an important
tool in maximising mutual cooperation in the network
outlined in this research, and potentially other net-
work structures also. We also observe an effect of
the size of the actual payoffs themselves on the out-
come behaviours observed, which is critical informa-
tion for future experimentation. mSARSA seems to
display larger changes to its mutual outcomes when
K increases and the actual value of the payoffs them-
selves are large (see Conditions 5, 6, 7 in Figure 3).

7 CONCLUSIONS

Overall, the experiments detailed have thoroughly
tested the mSARSA algorithm presented in Collenette
et.al. (2017b) and Collenette et.al. (2018) with a
novel interaction structure and environment, and also
tested two further dimensions of interest (environ-
mental presence and cooperation index). We observed
similar trends to these past works, but also highlight
the limitations of differing versions of the algorithm
within our grid network where possible. Namely,
there was an exaggeration of weaknesses in the first
version of the algorithm, which were altered by the
authors in the second paper but in ways that possibly
present further technical issue. The moody alternative
to SARSA cooperates more than its standard counter-
part, but is vulnerable to exploitation in its first iter-
ation, meaning that in this particularly intense inter-
action structure it does not adapt well to poor out-
comes. Additionally, whilst increasing the propor-
tion of SARSA agents in the environment serves to
reaffirm this vulnerability to exploitation, altering the
cooperation index K demonstrated that mSARSA fol-
lows behavioural reactivity to this variable previously
observed in humans. This offers some affirmation to
the design basis of the variant algorithm, and creates
potential for more accurate human behavioural mod-
elling in future simulations.

In future, we would like to perform similar evalua-
tions with the second iteration of the algorithm when
the resources become available to do so, and repeat
experiments with K with differing levels of agent con-
nectivity to test for interaction effects. There are also
many avenues of experimentation possible for altered
versions of mSARSA; using alternative methods to
evaluate the desirability of an outcome, for example.
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