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Abstract

Multi-principal-component alloys have attracted great interest as a novel paradigm in alloy design, with often unique
properties and a vast compositional space auspicious for materials discovery. High entropy alloys (HEAs) belong to
this class and are being investigated for prospective nuclear applications with reported superior mechanical properties
including high temperature strength and stability compared to conventional alloys. Computational materials design has
the potential to play a key role in screening such alloys, yet for high temperature properties, challenges remain in finding
an appropriate balance between accuracy and computational cost. Here we develop an approach based on density-
functional theory (DFT) and thermodynamic integration aided by machine learning based interatomic potential models
to address this challenge. We systematically evaluate and compare the efficiency of computing the full free energy surface
and thermodynamic properties up to the melting point at different stages of the thermodynamic integration scheme.
Our new approach provides a ×4 speed-up with respect to comparable free energy approaches at the level of DFT, with
errors on high temperature free energy predictions less than 1 meV/atom. Calculations are performed on an equiatomic
HEA, TaVCrW - a low-activation composition and therefore of potential interest for next generation fission and fusion
reactors.

Keywords: TU-TILD, low-activation, high entropy alloys, machine learning, moment tensor potential, lattice
expansion, bulk modulus, heat capacity

1. Introduction

The development of alloys based on multiple principal
components (elements) is an area of broad interest within
the material science community. These alloys– known var-
iously as multi principal component alloys (MPCAs), high
entropy alloys (HEAs) and compositionally complex alloys
(CCAs) –access the interior regions of hyper-dimensional
compositional space, away from the corners that are sam-
pled by conventional alloys, opening up a vast, largely un-
tapped expanse of compositions. HEAs can be considered
a subcategory of MPCAs alongside CCAs. In this arti-
cle we adopt the definition of HEAs as MPCAs consisting
of a single extended solid solution.1 Due to their multi-
principal component makeup, HEAs (and MPCAs more
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1There is not yet an agreed definition of HEAs in the literature.
Aside from the definition we adopt, some define HEAs as alloys con-
sisting of 5 or more principal components in equiatomic or nearly
equiatomic concentrations (original definition), while others use the
term rather as we use MPCA in this article to encompass both single
phase solid solutions and CCAs.

generally) exhibit often unique and interesting properties
compared with traditional alloys including, depending on
the composition, superior high temperature strength and
stability and good corrosion resistance [1, 2]. HEAs are
therefore one class of materials that are under considera-
tion as potential structural materials for next generation
fission and fusion reactors, being designed to operate at
higher temperatures than current reactors - in some cases
up to 1000 °C. Structural materials used in current gen-
eration reactors are unsuitable for such applications [3]
and new materials are required that can withstand high
thermal stress at higher temperatures, more corrosive en-
vironments and higher neutron fluxes [4, 5].

Another important consideration in next generation re-
actor design is that elements should be low activation,
i.e., suitable for recycling or disposal in non-active land-
fills approximately 100 years after removal from the re-
actor [6, 7, 8]. This precludes the use of Ni or Zr [9, 10]
and limits the elements from which HEA compositions can
be drawn to low activation candidates Ti, V, Cr, Mn, Fe,
Ta and W. Previous studies indicated that in fusion re-
actors, W-based HEAs (W0.38Ta0.36Cr0.15V0.11) showed
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outstanding radiation resistance [11]. The quinary sys-
tem Cr-Ta-Ti-V-W and its subsystems have also been in-
vestigated in terms of phase stability and order-disorder
transition temperatures [12]. In total there are 29 differ-
ent combinations of low activation elements to investigate
for quinary HEAs and a vast composition space to probe
for non equiatomic compositions. Thus a methodology
that can predict the properties of the materials in advance
would be extremely useful.

High temperature thermodynamic properties of solids,
including the thermal expansion, heat capacity, etc., are
computationally expensive to calculate accurately. Using
density-functional theory (DFT) and ab initio molecular
dynamics (AIMD), the thermodynamic properties can be
derived from the volume and temperature dependencies of
the free energy. However, calculated directly from AIMD,
this would require in the order of 107 AIMD steps [13] to
achieve statistical convergence, making it infeasible.

Several approximation schemes exist in the literature
which take into account phonon excitations at different
levels. The most popular technique is the quasiharmonic
approximation (QHA) method [14, 15]. However, this
approach does not take into account the anharmonic-
ity of phonons, which can significantly affect thermody-
namic properties at higher temperatures [16]. Other ap-
proaches based on effective harmonic Hamiltonians cap-
ture some of the high temperature phonon-phonon inter-
actions and can approximately account for temperature-
induced changes [17, 18, 19, 20, 21, 22].

Although computationally more challenging, numeri-
cally exact vibrational free energies can be obtained us-
ing thermodynamic integration (TI). Specifically, fully an-
harmonic free energies can be computed using QHA as
an initial reference and AIMD runs using the Langevin
thermostat. An important step in improving the effi-
ciency of TI-based methods was the upsampled thermo-
dynamic integration using Langevin dynamics (UP-TILD)
approach [13] in which low DFT parameters (energy cut-
off, k-points, etc.) were used to accelerate evaluation of
TI integrals, with a post-processing ‘upsampling’ step to
bring results back to DFT accuracy.

Further improvements in efficiency were achieved with
the two-stage upsampled thermodynamic integration us-
ing Langevin dynamics (TU-TILD) [23] approach, based
on UP-TILD, but with the introduction of tailored inter-
atomic potentials to characterise an intermediate reference
state within the TI scheme. The purpose of these poten-
tials is to accelerate the algorithm, with no loss of accu-
racy in the anharmonic free energies (converged to within
±1 meV/atom). The TU-TILD method has already been
used to calculate the free energies and ab initio thermody-
namic properties of ZrC and vacancies in ZrC [23, 24]. In
these calculations, reference-free modified embedded atom
method (RF-MEAM) potentials were used to characterise
the intermediate reference state [25] and a ×50 improve-
ment in efficiency was achieved in comparison with the
UP-TILD approach. Thermodynamic properties to the

melting point for other systems such as Cu, Ni, Al and
W have also been calculated using TU-TILD in previous
works. The results show remarkable agreement to experi-
mental data [26, 27].

Our objective here is to further improve the efficiency
of the TU-TILD approach to ready it for high through-
put screening of MPCAs. To achieve this we use machine
learned interatomic potentials, specifically moment tensor
potentials (MTPs), to define our intermediate reference
state. The efficiency of MTPs in predicting DFT energies,
forces and phase space for a disordered 5-component HEA
has been demonstrated earlier for the NbMoTaVW sys-
tem [28] for a single (V, T ) point. The DFT free energy and
atomic forces at 3000 K were compared to that predicted
by the MTP, an embedded-atom method (EAM) poten-
tial [29, 30], an effective harmonic potential, and a 0 K
harmonic potential. Of these, the MTP-predicted forces
had by far the lowest errors and the corresponding MTP
free energy was more accurate by an order of magnitude,
thereby making the MTPs the best candidate for the in-
termediate state in the TU-TILD scheme. In the present
work, we extend this approach to calculate free energies for
an entire grid of (V, T ) points from which thermodynamic
properties such as the lattice expansion, bulk modulus and
specific heat are calculated.

Throughout our calculations we perform a critical anal-
ysis of various parts of the TU-TILD scheme in terms of
the accuracy of the predicted properties and the efficiency
of the overall approach. Efficiency gains are achieved by
reducing the number of separately optimised potentials re-
quired to define the intermediate reference and by explor-
ing the efficacy of different initial references. Moreover
since MTPs are extremely effective in replicating the DFT
phase space, we also propose a modification to the TU-
TILD method whereby the most expensive second TI stage
is completely avoided, with only a nominal change in the
accuracy of the results.

We apply our accelerated scheme to the low-activation
equiatomic body-centred cubic (BCC) TaVCrW system
as a first application of TU-TILD in computing the full
free energy surface and thermodynamic properties of an
MPCA.

2. Methodology and computational details

The Helmholtz energy of a system, referred hereafter
as the total free energy, can be expressed as the sum of
different contributions. For a non-magnetic, fixed chemical
configuration (i.e., a chemically ordered or a particular
disordered atomic arrangement), the total free energy can
be adiabatically decomposed as:

F (V, T ) = E0K(V ) + F el(V, T )

+ F vib(V, T ) + F cpl(V, T ),
(1)

where E0K is the total energy at T = 0 K, F el is the elec-
tronic free energy of the static lattice, F vib is the free
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energy coming from atomic vibrations and F cpl represents
adiabatic coupling terms, i.e., the effect of vibrations on
the electronic free energy and vice-versa [26]. The first
two terms in Equation (1) are computed using inexpen-
sive DFT calculations. The more challenging vibrational
free energy and the coupling contribution are calculated
using the TU-TILD scheme. In a recent work [12], Monte-
Carlo simulations predicted an order-disorder temperature
of around 1300 K for TaVCrW below which there was
short-range-ordering. Configurational entropy will thus
have an effect on the thermodynamic property predictions
around this temperature, but this is beyond the scope of
the present work.

Here, we focus primarily on high temperature thermo-
dynamic properties and for all calculations, we assume a
fully disordered BCC solid solution across the entire tem-
perature range. The chemical disorder is modelled by
a 128-atom BCC TaVCrW special quasi-random struc-
ture (SQS) [31]. The structure is created in such a way
that the correlation function of the first two shells of the
neighbor-pair interactions is minimized. The accuracy of
the total vibrational free energy was tested between three
different SQS for selected (V, T ) points for which it varied
by less than 1 meV/atom. Hence the final thermodynamic
properties are presented here for a single SQS.

Once F (V, T ) is known over the relevant volume-,
temperature-range, a free energy surface can be param-
eterised. A Legendre transformation on the free energy
surface gives the Gibbs energy G(P, T ) = F (V, T ) +
PV . From this, thermodynamic properties including the
temperature-dependent lattice constant alat(T ), isother-
mal bulk modulus BT (T ) and isobaric heat capacity
CP (T ) can be computed [32, 33] as given by

alat(T ) = 3
√

2V (T ) with V (T ) =

(
∂G(P, T )

∂P

)

T

, (2)

BT (T ) =
1

κ
with κ = − 1

V

(
∂2G(P, T )

∂P 2

)

T

(3)

and

CP (T ) = −T
(
∂2G(P, T )

∂T 2

)

P

. (4)

The DFT energies and forces entering the different free
energy contributions were calculated with the VASP soft-
ware package using the projector augmented wave (PAW)
method [34, 35, 36, 37]. Both GGA and LDA exchange-
correlation functionals were used [38, 39]. Semi-core p elec-
trons were included as valence states.

2.1. Energy of the static lattice

The first term in Equation (1), E0K(V ) was obtained
by fitting the Vinet equation of state [40] to E0K values
calculated across a relevant set of volumes. The temper-
ature dependent part of the static electronic free energy

F el(V, T ) was computed as [33]:

F el(V, T ) = F el
tot(V, T )− E0K(V ), (5)

where F el
tot is the total electronic free energy according to

the finite temperature formulation of DFT [41] calculated
at a finite electronic temperature with the corresponding
Fermi smearing. In our calculations, electronic free ener-
gies were extracted from DFT runs on a mesh of 10 tem-
peratures and 9 volumes and the pure T dependent contri-
bution was obtained by subtracting the energy at T = 0 K.
These DFT runs were performed with a plane wave cutoff
of 650 eV and a k -point grid of 5×5×5. A dense temper-
ature sampling was obtained using a physically motivated
fit F el(T ) = − 1

2TS
el(T ), with

Sel(T ) = −2kB

∫
dεN el(T ) [f ln f + (1− f) ln(1− f)] ,

(6)
where f = f(ε, T ) is the Fermi-Dirac distribution function
and N el(T ) represents an energy-independent electronic
density of states [33]. N el(T ) was used as a fitting quan-
tity by expanding it to a fourth-order polynomial in T .
Following this, the volume dependence was parametrized
with a fourth-order polynomial in V . One needs to keep
in mind that this term only calculates the electronic free
energy of the static lattice. At higher temperatures, the
atoms are no longer in their ideal positions, and hence
the electronic free energy is affected by high temperature
vibrations. This change in the electronic free energy is
represented by the F cpl(V, T ) term in Equation (1).

2.2. Vibrational free energy including coupling

The total vibrational free energy including explicit an-
harmonic contributions was calculated at DFT accuracy
using the TU-TILD scheme. TU-TILD provides the vi-
brational free energy difference between an initial refer-
ence state that describes the system and DFT, which also
accounts for the change in the electronic free energy due
to vibrations F cpl(V, T ). This can be written as

F vib(V, T ) + F cpl(V, T ) = F ref(V, T ) + ∆F ref→DFT(V, T ),

(7)

where F ref(V, T ) is the free energy calculated using the ini-
tial reference and ∆F ref→DFT(V, T ) is the remaining con-
tribution calculated using TU-TILD.

2.2.1. Reference state for the vibrational free energy

Earlier TU-TILD-based studies used the QHA as a
reference [28, 23, 26]. Using the finite displacement
method [39, 42, 43] this requires DFT calculations for all
symmetry-inequivalent atomic displacements to obtain the
harmonic force constants matrix for a given volume. For
a 128-atom disordered SQS this would require 384 DFT
calculations which would be prohibitively expensive. In-
stead we opt here for more computationally efficient initial
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reference models, while carefully testing to ensure that the
choice of the initial reference does not affect the total free
energy.

The first reference state considered was an Einstein
solid [44], in which all atoms are assumed to be oscillating
with the same single frequency. We assessed three different
Einstein solids as an initial reference: (i) with a fixed force
constant of 5.83 eV/Å2 (average frequency of 4.03 THz),
(ii) with a fixed force constant of 12.63 eV/Å2 (average fre-
quency of 5.93 THz) and (iii) with volume-dependent force
constants ranging from 5.83 eV/Å2 to 12.63 eV/Å2. We re-
fer to these models hereafter as ‘Einstein(1)’, ‘Einstein(2)’
and ‘qh-Einstein’, respectively. The frequencies for Ein-
stein(1) and Einstein(2) were chosen as follows. Firstly,
we computed the 0 K QH phonon frequencies of the four
unaries at the volume corresponding to room tempera-
ture. The mean value of these frequencies was found to
be 9.23 eV/Å2. To this we subtracted and added approx-
imately one-third of the value to make a lower and upper
bound that subsequently corresponds to Einstein(1) and
Einstein(2) respectively. Choosing different Einstein solids
as reference states was done primarily to evaluate the ac-
curacy of the methodology. We will show later (in Table 3)
that these reference frequencies do not affect the total free
energies.

The second reference model considered was an effec-
tive QH model where the force constants were fit to
high-temperature AIMD data, similar in nature to the
temperature-dependent effective harmonic potentials [19,
45]. Four effective harmonic force constants were fit
to atomic forces from AIMD runs at four different vol-
umes (corresponding to lattice constants 3.035 Å, 3.095 Å,
3.175 Å and 3.255 Å) at 500 K using the implementa-
tion in the S/PHI/nX code [46]. Each effective force con-
stant was then parameterised by a third-order polynomial
in volume which served as the reference for each volume
point in the TI. From the volume-dependent effective force
constants, effective phonon frequencies were calculated by
constructing the dynamical matrix and solving the eigen-
problem [47, 48]. We refer to this reference as ‘qh-effective’
in this work.

For each of the above cases, the reference free energy
F ref(V, T ) (per atom) was analytically calculated from the
corresponding frequencies as given by

F ref =
1

N

3N∑

i=1

{
1

2
~ωref

i + kBT ln

[
1− exp

(
~ωref

i

kBT

)]}
,

(8)

where N is the number of atoms and the summation is over
the 3N frequencies ωref

i . In the Einstein models, the fre-
quencies corresponding to the same species were the same.
For the ‘qh-effective’ reference, the free energies were re-
calculated on a much denser 20×20×20 q-point grid in
reciprocal space. For a temperature mesh with 1 K steps,
the reference free energy was then parameterised using 11

volumes with a third order polynomial in V .

2.2.2. TU-TILD

In order to account fully for anharmonicity, we per-
formed TU-TILD calculations from each of the references
up to DFT. According to the conventional TU-TILD for-
malism that has been well established for known systems
in the literature [23, 26, 28, 27], the free energy difference
between the reference and full DFT energy is given by

∆F ref→DFT = ∆F ref→MTP + ∆FMTP→DFT + 〈∆E〉up

=

∫ 1

0

dλ1

〈
EMTP − Eref

〉
λ1

+

∫ 1

0

dλ2

〈
EDFT

low − EMTP
〉
λ2

+ 〈∆E〉up
,

(9)

with

〈∆E〉up
= −kBT ln

〈
exp

(
−
EDFT

high − EDFT
low

kBT

)〉

low

.

(10)
In Equation (9), the λ’s are coupling parameters be-
tween the initial (λ = 0) and final (λ = 1) states in a
TI for which the energy of the coupled system is Eλ =
(1 − λ)Einitial + λEfinal and for which the corresponding

atomic forces are F
(i)
λ = (1−λ)F(i),initial +λF(i),final (with

i labelling the atoms), driving the Langevin dynamics.
〈...〉 denotes ensemble averaging, ‘ref’ corresponds to the
reference model (Einstein(1), Einstein(2), qh-Einstein or
qh-effective in this case), ‘MTP’ is an intermediate inter-
atomic potential (described in Section 2.2.3) that is fit to
DFT energies and forces (the intermediate potential can
be any interatomic model, in this work we use MTPs),
∆F ref→MTP is the free energy difference between the ref-
erence and potential, ∆FMTP→DFT is the free energy dif-
ference between the potential and low-parameter DFT and
〈∆E〉up

is the upsampled energy calculated using the free
energy perturbation theory [49] from configurations from
a low-parameter AIMD run. EDFT

low and EDFT
high are DFT

energies with low and high convergence parameters respec-
tively.

The ∆F ref→DFT calculations were performed on a dense
mesh of 10 temperatures from 250 K to 2500 K and 11
volumes for each temperature (cf. Fig. 1 below). Both
the AIMD run and the fitted interatomic potentials pre-
dict a solid phase up to 2500 K. Hence we chose 2500 K,
which is also the highest temperature to which an inter-
atomic potential was fitted to, as the temperature upper
bound for the free energy calculations. One should keep
in mind that this is not the actual melting temperature,
but a value close to it, and one for which the alloy is most
certainly in a solid-phase. In order to precisely calculate
the melting temperature, more advanced techniques [50]
are needed. As discussed earlier, different sets of calcula-
tions were performed to assess the four different initial
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references (two volume-independent Einstein solids, qh-
Einstein and qh-effective). The integrals in Equation (9)
were numerically calculated using a tangential fit through
the data points. Eref was analytically calculated, EMTP

using LAMMPS [51, 52] and EDFT
low and EDFT

low using VASP.
Thermodynamic integration was performed on a 11×10

(V, T ) mesh as mentioned above. The first TI from ‘ref’ to
‘MTP’ to compute ∆F ref→MTP, which is computationally
extremely cheap, was done for a set of 20 λ points for each
(V, T ). Each Langevin dynamics run was performed for
300,000 steps with a timestep of 0.5 fs. The second TI from
‘MTP’ to ’DFT-low’ to compute ∆FMTP→DFT, which is
significantly more expensive since it involves DFT calcu-
lations, was done for a set of 5 λ points for each (V, T ).
Following a pre-equilibration using the interatomic poten-
tial for 1000 steps, each Langevin dynamics run was per-
formed for 500 steps with a timestep of 2 fs. During this
stage, low convergence DFT parameters were used - an
energy cutoff of 300 eV and a 2×2×2 k -point grid. The
DFT energies were calculated with the electronic temper-
ature set equal to the system temperature. In this way
the temperature-dependent electronic free energy is prop-
erly included in the ∆FMTP→DFT values. The number of
steps and λ values were chosen to ensure convergence of
the ∆F ref→DFT to within 1 meV/atom. In Equation (10),
the upsampled DFT energies were calculated using stricter
parameters - a 450 eV energy cutoff and a 4×4×4 k -point
grid and again with the electronic temperature turned on,
on 10 configurations from the low-parameter DFT run, un-
til 〈∆E〉up

converged. Once the ∆F ref→DFT calculations
were finished for the set of (V, T ), we used the values to
fit a much denser surface in (V, T ). Using the analytical
formula derived in Ref. [13], a smooth anharmonic free
energy surface was fitted using a renormalized frequency
with basis functions 1, T , V , V 2 and V 3.

The performance of the above described TU-TILD relies
on the accuracy and robustness of the intermediate inter-
atomic potential. The more accurately the interatomic
potential describes the configurational phase space and
energy of the system, the fewer the number of expensive
Langevin dynamics runs needed to achieve statistical con-
vergence on the DFT energies. Here we fitted machine-
learning-based MTPs and used them as the intermediate
potential in the TU-TILD scheme.

2.2.3. MTP fitting

MTPs are a class of machine learned potentials based on
atomic environment descriptors and linear regression [53].
MTPs describe the local atomic environment of the ith
atom by the moments of inertia of neighboring atoms, with
the moments given by

Mn,ν =
∑

j

fn,i,j (rij) rij � rij � . . .� rij︸ ︷︷ ︸
ν times

, (11)

where the radial functions fn,i,j (rij) define shells, n =
0, 1, ..., around the ith atom, with contributions from atom

j which can depend on the types of atoms i and j. Dif-
ferent tensor contractions of these moments M form basis
functions of the MTP. A linear combination of these ba-
sis functions is parameterised to reproduce energy, atomic
forces and stress data from AIMD runs. MTPs have been
shown to outperform other machine learning based poten-
tials [54] and more conventional EAM-based potentials [28]
which prompted our use of them.

The MTPs were fit using the MLIP package [53, 55].
First, AIMD simulations were carried out at 500 K, 1500 K,
2000 K and 2500 K and 11 volumes at each temperature for
5 ps. The volume range at each temperature was chosen
based on the Debye-Grüneisen approximation [56] from the
energy-volume curve in Section 2.1. A cutoff of 300 eV, a
k -point mesh of 2×2×2 and the corresponding exchange
correlation were used for generating the fitting database.
Separate MTPs were fit to configurations corresponding
to each temperature (configurations from all volumes were
included for a particular temperature). The MTPs were
of level 16 with 608 parameters and fitting weights for the
energies, atomic forces and stresses were set to 1, 0.1 Å2

and 0.001 Å6, respectively.
Regarding the application of our fitted MTPs in our

TI, we analysed two scenarios. In the first case, we per-
formed TI calculations using all the four MTPs depending
on the temperature of the TILD run. This is similar to
previous studies of multicomponent alloys using TU-TILD
(although in these studies potentials were computed and
applied for different volumes rather than temperatures)
[23, 24]. In the second case, we explored a new approach,
where we used only the MTP potential that was fit to
2500 K AIMD runs for the entire temperature-range dur-
ing TU-TILD. Here, it is beneficial to use the highest tem-
perature fitted MTP for the entire temperature range (in
comparison to fitting a single MTP to configurations from
different temperatures) since the volume range and the
configurations spanned by the highest temperature MD
runs are diverse enough to serve as a good training set for
an efficient single MTP. The final thermodynamic proper-
ties and computational efficiency were compared in both
cases, where either four MTPs were used or where a single
MTP was used across the entire temperature-range.

2.2.4. Direct upsampling

Apart from systematically investigating multiple refer-
ence potentials and MTPs in the conventional TU-TILD
formalism, an additional improvement to the TU-TILD
methodology is proposed here which is inspired by the ex-
ceptional performance of MTPs in replicating the DFT
configurational space. According to this proposition, the
more expensive ∆FMTP→DFT calculation in the TU-TILD
scheme can be completely avoided.

A similar modification was suggested earlier [24] where
thermodynamic properties in a ZrC system were calcu-
lated only up to the accuracy of the intermediate inter-
atomic potential. The results compared well to DFT
since there was no significant change in the electronic
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free energy with temperature and the intermediate inter-
atomic potential was able to capture the phonon-phonon
interactions accurately. This is, however, insufficient for
the here investigated refractory system because of the
significant temperature-dependent electronic free energy
changes. Hence, apart from avoiding the second stage of
TU-TILD, we perform here direct upsampling on config-
urations generated by the interatomic potential in order
to directly capture the difference in free energies (includ-
ing the electronic contribution) between the interatomic
potential and DFT.

The upsampling is performed directly on configurations
generated from MD runs using the MTP. According to this
modified formalism, referred from here on as direct upsam-
pling, ∆F ref→DFT from Equation (7) can be decomposed
as

∆F ref→DFT = ∆F ref→MTP + 〈∆E〉up-new

=

∫ 1

0

dλ
〈
EMTP − Eref

〉
λ

+ 〈∆E〉up-new
,

(12)

with

〈∆E〉up-new
= −kBT ln

〈
exp

(
−
EDFT

high − EMTP

kBT

)〉

MTP

,

(13)
where 〈∆E〉up-new

is the upsampled energy calculated us-
ing free energy perturbation theory directly from con-
figurations generated by the MTP. The high-parameter
DFT conditions in our application of the proposed direct-
upsampling method were the same as described in Sec-
tion 2.2.2, where the DFT energies were calculated with
the electronic temperature equal to the system tempera-
ture. The temperature-dependent electronic free energy
gets indirectly included in the 〈∆E〉up-new

term. For each
(V, T ), 10 configurations were chosen by which 〈∆E〉up-new

was converged to within 1 meV/atom.

Similar to the conventional TU-TILD, direct upsam-
pling was also performed on a 11×10 (V, T ) grid. To visu-
alize the density of the mesh on which TU-TILD and direct
upsampling calculations were performed, Fig. 1 shows the
calculated vibrational free energy values on the (V, T ) grid
points. The comparison of the free energy values using
both methodologies will be discussed later in Section 3.6.

Once the upsampling calculations were finished, we ap-
plied a surface fitting to a much denser (V, T ) grid with
the same basis functions as in Section 2.2.2.

After E0K(V ), F el(V, T ) (both Section 2.1) and
F vib(V, T ), F cpl(V, T ) (both Section 2.2) were calculated
on a dense (V, T ) grid, they were summed up to obtain
the full free energy F (V, T ) from which thermodynamic
properties including lattice expansion, isobaric heat ca-
pacity and bulk modulus were numerically calculated us-
ing Eqs. (2), (3) and (4) respectively. The entire workflow
describing TU-TILD and direct upsampling for vibrational
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Figure 1: Grid of (V, T ) points on which TU-TILD and direct upsam-
pling calculations were performed. Vibrational free energies calcu-
lated using both methodologies using the GGA exchange-correlation
functional are plotted at each point for comparison (magenta dots
for TU-TILD and black dots for direct upsampling). The deviation
in the magenta and black dots are within ±1.5 meV/atom

free energy calculation is shown in Fig. 2. The different ref-
erence potentials are in orange boxes and the two different
intermediate MTP scenarios are in red boxes. The steps
inside the grey box, which belong to the conventional for-
malism, can be completely avoided in our proposed mod-
ification. This new modified TILD methodology with di-
rect upsampling – which is the most optimal procedure for
thermodynamic property predictions – is represented with
thick black arrows and formulae in the flowchart.

3. Results and Discussion

3.1. MTP fitting

As detailed in Section 2.2.3, we fitted different MTPs
to AIMD runs performed at 500 K, 1500 K, 2000 K and
2500 K. Table 1 shows the root mean square errors
(RMSE) in energies and atomic forces for each of the
MTPs with respect to the DFT values in the corresponding
dataset. Each of the MTPs is fitted to within 3 meV/atom
accuracy. The RMSE in atomic forces increases with in-
creasing temperature of the AIMD runs from which config-
urations are taken. Since we also tested the performance of
a single 2500 K MTP across the entire temperature range,
the RMS errors in energies and forces predicted by MTP-
2500K compared to the AIMD data at all four tempera-
tures is shown in Table 2.

The performance of MTPs as an intermediate state in
the TU-TILD scheme can also be assessed by comparing
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Figure 2: Flowchart summarising the standard TU-TILD approach and the improvements developed herein. We compare four different initial
reference models (orange boxes), where Einstein(1) and Einstein(2) correspond to two different Einstein solids with different fixed frequencies,
qh-Einstein is a volume-dependent Einstein solid and qh-effective is a volume-dependent effective harmonic model. Two different scenarios
for the intermediate MTP potential are considered (red boxes), where we compare using multiple MTPs that have been fitted to different
temperatures and a single 2500 K fitted MTP, for the entire temperature range. The steps inside the grey box are a part of the standard
TU-TILD. In this work, we have improved on this by directly upsampling from the MTP stage (〈∆E〉up−new). After the current extensive
study, the authors recommend the direct-upsampling method (marked with black arrows) for future studies.
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Figure 3: (a)
〈
EDFT

low − EMTP
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and standard deviation as a function of λ at 2500 K and 3.09 Å during a TI from MTP to DFT-low and (b)
the corresponding atomic force correlation between MTP-2500 and DFT for λ = 1.

the differences in energies and forces during TI to DFT. In
Fig. 3, we show one such comparison. Here, the MTP that

was fit to 2500 K AIMD runs was used to run Langevin
dynamics at 2500 K and at a lattice constant of 3.09 Å.
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Table 1: RMS errors in energies and atomic forces of the fitting
dataset for each of the MTPs with respect to the DFT values.

Potential
RMSE in energies RMSE in forces

(meV/atom) (eV/Å)

MTP-500K 2.02 0.11
MTP-1500K 2.78 0.18
MTP-2000K 2.47 0.21
MTP-2500K 2.36 0.25

Table 2: RMS errors in energies and atomic forces predicted by
MTP-2500K at all four temperatures with respect to DFT.

RMSE in energies RMSE in forces
MTP-2500K

(meV/atom) (eV/Å)

AIMD 500K 1.95 0.08
AIMD 1500K 2.46 0.10
AIMD 2000K 4.48 0.14
AIMD 2500K 2.36 0.25

Fig. 3(a) shows the variation of
〈
EDFT

low − EMTP
〉
λ

and the
standard deviation of the energy difference as a function
of λ. Fig. 3(b) shows the atomic force correlation between
MTP and DFT for λ = 1. The area under the red curve,
which gives the free energy difference between the MTP
and DFT, is around 1 meV/atom, and the standard devi-
ation is close to 2 meV/atom for all λ values. The RMSE
in the atomic forces for λ = 1 is 0.15 eV/Å. Although not
explicitly shown here, the accuracy of all the MTPs for TI
calculations at other temperatures and volumes is equally
good, with gradually increasing free energy difference with
V and T . Table 1 and Fig. 3 convey the fact that MTPs are
extremely effective as an intermediate state in TU-TILD.

3.2. Initial reference models in TU-TILD

We investigated four different reference models in terms
of their efficiency and practicability. Fig. 4 shows the rel-
evant

〈
EMTP − Eref

〉
λ

curves as a function of λ between
the reference models Einstein(1), Einstein(2), qh-Einstein
and qh-effective, and the 2500 K fitted MTP at 2500 K and
3.16 Å lattice constant. The curve for the qh-Einstein ref-
erence falls in between the two Einstein(1) and (2) curves,
which is reasonable because it corresponds to an inter-
polation between these two endpoints. Further, the qh-
Einstein reference shows a similar behavior as the qh-
effective reference, although the latter shows a smoother
λ dependence. Upon adding the reference free energy F ref

to ∆F ref→MTP (the free energy difference between the ref-
erence and the 2500 K MTP) for the four different ref-
erences, we obtain the total vibrational free energy pre-
dicted by the 2500 K MTP. ∆F ref→MTP is calculated as
the area under the curves. These values are tabulated and
summed up to obtain the vibrational free energy in Ta-
ble 3. We observe that the final vibrational free energy
values are within ± 1 meV/atom irrespective of the refer-
ence. This is shown here for a single (V, T ) point, but it
remains valid for all data points at which free energies are

calculated. In each case the difference in the free energy
based on the reference model is compensated by the free
energy difference during TI. In Fig. 4, the qh-effective ref-
erence gives the smoothest λ-dependence of all the curves.
Avoiding strong non-linear dependencies in particular at
large λ values leads to the smallest error while calculating
the area under the curve (∆F ref→MTP). Therefore, we use
qh-effective as the reference for all future results described
in this article.

Table 3: Vibrational free energy up to the 2500 K MTP (F vib =
F ref +∆F ref→MTP) in meV/atom using the four different references
at 2500 K with lattice constant 3.16 Å.

Reference F ref + ∆F ref→MTP = F vib

Einstein(1) −1675.49 65.09 −1610.40
Einstein(2) −1424.03 −185.93 −1609.96
qh-Einstein −1597.70 −12.34 −1610.04
qh-effective −1566.20 −43.21 −1609.41
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Figure 4:
〈
EMTP − Eref

〉
λ

versus λ during TI between the differ-
ent references and the 2500 K MTP at 2500 K. Einstein(1) and Ein-
stein(2) represent Einstein models with spring constants 5.83 eV/Å2

to 12.63 eV/Å2 respectively, qh-Einstein is a volume-dependent Ein-
stein solid reference and qh-effective denotes a volume-dependent
effective harmonic reference.

3.3. Thermodynamic properties using the conventional
TU-TILD approach

First we demonstrate the results obtained using qh-
effective as initial reference, four MTPs across the tem-
perature range, the conventional TU-TILD formalism (i.e.
including the second TI), and using the GGA exchange
correlation functional. During TI at a given temperature,
an MTP that was fit either to that particular temperature
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Figure 5: Lattice constant, isobaric heat capacity and bulk modulus as a function of temperature for TaVCrW as predicted by the conventional
TU-TILD approach using the GGA exchange correlation function; qh-effective was used as the reference and four MTPs were used across the
temperature range in the TU-TILD calculation. The thermodynamic properties are shown to different levels of approximation. The orange,
green, blue and black lines correspond to properties predicted to qh-effective, qh-effective including static electronic, MTP and low-parameter
DFT including coupling accuracy respectively. The magenta dots are up to full DFT accuracy. The green and blue shaded regions represent
the contribution of the static electronic and anharmonic free energies to the thermodynamic properties respectively. The black arrows (shown
only at 2500K) denote the shift in the thermodynamic properties upon including coupling effects.

or a slightly higher temperature was used (MTP-2500K
for 2500 K and 2250 K, MTP-2000K for 2000 K and 1750 K
and so on). Once the full free energy surface F (V, T ) was
obtained, thermodynamic properties were numerically cal-
culated by taking the corresponding derivatives along dif-
ferent directions. Fig. 5 shows the lattice constant alat,
the isobaric heat capacity CP and the bulk modulus BT
as a function of temperature, computed at different levels
of approximation: high-temperature effects up to the ac-
curacy of the qh-effective model given by the orange lines,
including the temperature-dependent electronic contribu-
tions on the static lattice given by green lines, including
anharmonicity as predicted by the MTP given by the blue
lines, including the temperature-dependent change in elec-
tronic free energy due to vibrations (coupling) given by the
black lines and up to full DFT accuracy given by the ma-
genta dots.

The 0 K lattice constant is calculated as 3.105 Å, which
is very close to the calculated value from Vegard’s law [57]
using the DFT-GGA 0 K lattice constants of the unaries
(3.088 Å) and using the experimental lattice constants of
the unaries (3.098 Å). Similarly, the 0 K bulk modulus is
predicted to be 223 GPa, which is in close proximity to
the Vegard’s law calculated value of 236 GPa using unary
GGA calculations and 215 GPa from unary experimental
values [58, 59, 60]. The static electronic contribution has
a considerable effect on the thermodynamic properties at
higher temperatures as represented by the green shaded
region in Fig. 5.

Including anharmonicity (represented by the blue

shaded region; at the level of the MTP and with respect to
the qh-effective reference) enhances the temperature de-
pendence of the lattice expansion, the isobaric heat ca-
pacity and the slope of the bulk modulus as shown by
the blue curves in Fig. 5. This demonstrates that anhar-
monic contributions to the vibrational free energy cannot
be neglected for accurate thermodynamic property pre-
dictions in TaVCrW, especially at temperatures near the
melting point, even though a qh-effective model is used
as the reference. Including the effect of coupling to the
total free energies partially compensates the strong anhar-
monic contribution, with the strength of the compensa-
tion depending on the specific thermodynamic quantity.
It should be stressed that the change in thermodynamic
properties represented by the shift from the blue to the
black curves is not an effect of the free energy difference
between MTP and DFT-low (which is very small as ev-
idenced from Fig. 3(a)), but predominantly due to the
temperature-dependent electronic free energy change com-
ing from high-temperature vibrations (coupling effect).
This shift in properties due to the coupling is also denoted
by the black arrows shown only at 2500 K in Fig. 5.

In order to further emphasise the fact that vibrations
have a strong impact on the high-temperature electronic
free energy, especially in refractory systems, we explicitly
indicate these values in Fig. 6. Here, the electronic free en-
ergy (Eq. 5) of the static lattice (shown in lighter shade) is
compared to that obtained as an average from 5 different
snapshots from an AIMD run at 2500 K. In these calcula-
tions, the electronic temperature corresponds to 2500 K. It
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is observed that, for the given point, the electronic free en-
ergy for TaVCrW changes by 13 meV/atom due to atomic
vibrations. For comparison, results are also plotted for the
corresponding refractory unaries at 2500K. The change in
the electronic free energy coming from vibrations can be
related to the smearing of the electronic density of states
(DOS) at higher temperature and the value at the Fermi
level as compared to the static electronic DOS. The quali-
tative change in the value of the DOS at the Fermi level at
high temperature is different for Ta in comparison to V and
W, and hence coupling reduces the electronic free energy
in Ta. Based on such an analysis, one can also speculate
how the static and smeared out electronic DOS would look
for the TaVCrW system. The background behind the elec-
tronic free energies and coupling effects has been studied in
thorough detail in [61]. The values in Fig. 6 indicate that
the electron-phonon coupling term is likewise not negli-
gible for accurate thermodynamic property predictions in
these systems. As will be discussed later, these electronic
free energy changes can be more efficiently captured by di-
rectly upsampling from the MTP. Once we have total DFT
free energies at low accuracy, upsampling the energies to
high parameter DFT accuracy has negligible effect on the
thermodynamic properties as evidenced by magenta dots
that fall on top of the black curves in Fig. 5.
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Figure 6: Comparison of the electronic free energies extracted from
AIMD runs– including the effect of vibrations –with those computed
for an ideal static lattice at 2500K. The energies are compared for
the TaVCrW HEA with three unaries that it is composed of. Unary
Cr is not shown here due to the challenges involved to account for
its complex magnetic nature [62].

3.4. Effect of the exchange-correlation functional

The thermodynamic properties were estimated using
both GGA and LDA exchange-correlation functionals.

Fig. 7 illustrates the alat, CP and BT predicted using
both functionals by the conventional TU-TILD method.
Here, we show the calculated values up to MTP accuracy
and including the coupling term up to full DFT accuracy.
The exchange correlation has the same effect in both of
these cases. As is the case with other metals and al-
loys [63, 64, 65], the LDA functional predicts a harder
system with a higher BT and smaller alat in comparison
to GGA. The predicted CP as the temperature nears the
melting point becomes smaller for LDA than for GGA.
Temperature has the same effect on the thermodynamic
property predictions using either functionals.

3.5. Single MTP vs multiple MTPs

Here, we discuss the effect of using a single MTP in
performing TU-TILD calculations across the entire tem-
perature range as opposed to using multiple MTPs. In
Section 3.1, we had shown the RMSE in energies and
forces and ∆FMTP→DFT (free energy difference between
the MTP and DFT-low) to be the key quantities that af-
fect the performance of the MTP in a TU-TILD method-
ology. Hence, we now compare these values at different
temperatures while using four MTPs (based on the fit-
ted temperature) and a single MTP across the full tem-
perature range, see Fig. 8. For a particular temperature,
the various dots represent increasing volume as one moves
from left to right. Both the RMSEs and the free energy
differences between MTP and DFT for all temperatures
fall in the same range irrespective of the use of a single or
multiple MTPs suggesting that they would be equally effi-
cient in a TU-TILD scheme up to the melting point. The
robustness of a single MTP fitted to high temperature MD
data facilitates an accurate prediction of thermodynamic
properties, not only at temperatures near the fitted data,
but across the entire temperature range. By using just
a single MTP, we also reduce the number of initially ex-
pensive AIMD runs that are needed for fitting MTPs and
the corresponding computational cost, without any loss of
accuracy.

Using a single MTP has another additional benefit. The
free energies calculated with a single MTP are smoother
in V and T (this is already noticed in the change in
∆FMTP→DFT values with volume at different tempera-
tures in Fig. 8) and fitting an accurate surface to these val-
ues is accomplished more efficiently. The thermodynamic
properties were also computed using the single MTP as the
intermediate state. Crucially, as we shall see in the next
section, there is no significant change in lattice constant,
bulk modulus and isobaric heat capacity even while using
a single MTP.

3.6. Direct upsampling

The novelty compared to the conventional TU-TILD
methodology that is proposed in this work is direct up-
sampling where upsampling was performed directly after
the first stage of TU-TILD on configurations generated by
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Figure 7: Lattice constant, isobaric heat capacity and bulk modulus as a function of temperature for TaVCrW as predicted by TU-TILD
using the GGA (orange) and the LDA (blue) exchange correlation functionals. Dashed curves correspond to the estimation up to the MTP
level. The solid curves include additionally the adiabatic electron-phonon coupling implicit in the TI from MTP to DFT.
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Figure 8: Correlation of the RMSE in atomic forces and the free energy difference between MTP and DFT-low (∆FMTP→DFT) calculated
using (a) four MTPs and (b) a single MTP for all (V, T ). Symbols of the same colour represent different volumes for a fixed temperature;
generally, the volume increases from left to right.

the MTP. A comparison of the total vibrational free en-
ergy using the conventional TU-TILD using four MTPs
across the temperature range and using direct upsampling
using only the MTP-2500K across the entire temperature
range with the GGA exchange-correlation functional for
the entire grid of (V, T ) points can be observed already
in Fig. 1. The data points match within DFT accuracy
even at high temperatures and large volumes. This indi-
cates that by performing direct upsampling using a single
high temperature fitted MTP, we achieved an accuracy of
±1.5 meV/atom for full free energy points. A consequence

of this is Fig. 9 which shows the thermodynamic properties
predicted from direct upsampling using a single MTP, rep-
resented by the black lines. The results lie on top of the
values predicted by the conventional TU-TILD method,
represented by magenta dots. The dots are the same as
the ones in Fig. 5.

Owing to the robustness of the MTPs, using only a sin-
gle high-temperature fit MTP and performing direct up-
sampling tremendously reduces the computational cost of
obtaining thermodynamic properties up to melting point
to DFT accuracy. This is summarised in the next section.
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Figure 9: Lattice constant, isobaric heat capacity and bulk modulus as a function of temperature for TaVCrW as predicted by direct
upsampling using a single MTP fitted to 2500 K in comparison to the previously computed values using conventional TU-TILD.

Table 4: Approximate computing time for thermodynamic properties
up to melting point in a 128-atom TaVCrW SQS using conventional
TU-TILD and direct upsampling. TI calculations are on a 11×10
(V, T ) mesh. The time is in 1K core hours.

Contribution
Cost New cost

(TU-TILD (Direct upsampling
with 4 MTPs) with 1 MTP)

E0K 2 2
F el 100 -
F ref (qh-effective) - 12
AIMD for MTPs 100 25
∆F ref→MTP 15 15
∆FMTP→DFT 720 -
〈∆E〉up 210 -
〈∆E〉up−new - 210

Total ≈ 1100 ≈ 260

3.7. Computational costs

The computing resources consumed for the 128-atom
quaternary system are listed in Table 4. Since we use
a single MTP in comparison to four MTPs, the number
of initial AIMD calculations reduces by one fourth. Be-
sides this, the biggest gain in speed is achieved by avoiding
the expensive second stage of the TU-TILD formalism (TI
from the interatomic potential to low parameter DFT).
Static electronic free energy calculations are also avoided
since the temperature-dependent electronic free energy is
included during direct upsampling.

4. Conclusions

Thermodynamic properties of the low activation
TaVCrW MPCA have been computed ab initio up to
2500 K. Assuming a fully disordered BCC system, we have

included all relevant finite temperature excitations: elec-
tronic, harmonic, anharmonic and (adiabatic) electron-
phonon coupling. The static electronic free energy at high
temperatures is considerable in this alloy, similar to what is
observed for its refractory unary endmembers, and it sig-
nificantly affects thermodynamic properties (particularly
the heat capacity). The effective harmonic model obtained
from a fit to ab initio molecular dynamic forces at 500 K
does not account for all vibrational interactions. As tem-
perature increases, a substantial anharmonic contribution
to the vibrational free energy and the resulting thermody-
namic properties is observed. The effect of anharmonicity
is found to be as critical as the static electronic contribu-
tion. In addition, high temperature vibrations couple to
the electronic free energy in this alloy, again in line with
the refractory unaries that it contains. Thus, to reach
DFT accuracy in the final property predictions, this effect
is non-negligible and has to be taken into account.

To achieve the just summarized results for a disordered,
chemically complex MPCA efficiently, we have exploited
the predictive capabilities of moment tensor potentials
(MTPs) in a conventional two-stage upsampled thermo-
dynamic integration using Langevin dynamics (TU-TILD)
methodology. The MTPs have been fitted to high temper-
ature ab initio data to this end. An extensive analysis of
the various stages of TU-TILD in calculating free energies
up to the melting point has been performed. The choice of
the initial reference to approximate the vibrational free en-
ergy of the solid does not affect the final free energy. How-
ever, from a practical perspective, an effective harmonic
reference provides an ideal interplay between fitting time
and the eventual time needed for statistical convergence of
free energy calculations during thermodynamic integration
and serves as the optimum reference. Owing to the ro-
bustness and superior performance of MTPs, we have also
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proposed a computationally-cheaper modification to the
TU-TILD methodology referred to as direct upsampling.
Here, the free energy difference to high-parameter DFT
across the entire temperature range is calculated directly
on configurations generated by a single high-temperature
fitted MTP, thereby avoiding the highly expensive second-
stage of TU-TILD and reducing the total computational
cost by 75%.

In addition to the properties predicted for the TaVCrW
alloy, the benefits of the current study are two-fold. First,
the performance of the MTP in predicting the configura-
tional phase space even for a complex system such as a
disordered HEA asserts its application for other systems.
Secondly, through the in-depth analysis and comparison to
the conventional methodology conducted herein, our mod-
ified formalism is well positioned for thermodynamic prop-
erty prediction and high-throughput screening of other
MPCAs. The methodology will be extended to investigate
other low activation HEAs and non-stoichiometric systems
in forthcoming articles.
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[38] P. E. Blöchl, Projector augmented-wave method, Physical Re-
view B 50 (24) (1994) 17953.

[39] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the
projector augmented-wave method, Physical Review B 59 (3)
(1999) 1758.

[40] P. Vinet, J. R. Smith, J. Ferrante, J. H. Rose, Temperature
effects on the universal equation of state of solids, Physical Re-
view B 35 (1987) 1945–1953.

[41] N. D. Mermin, Thermal properties of the inhomogeneous elec-
tron gas, Physical Review 137 (5A) (1965) A1441.

[42] K. Parlinski, Z. Li, Y. Kawazoe, First-principles determination
of the soft mode in cubic ZrO2, Physical Review Letters 78 (21)
(1997) 4063.
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