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Abstract 
The propagation of mixed-mode interlaminar fractures is investigated using existing 
experimental results from the literature and various partition theories. These are (i) a partition 
theory by Williams (1988) based on Euler beam theory; (ii) a partition theory by Suo (1990) and 
Hutchinson and Suo (1992) based on 2D elasticity; and (iii) the Wang-Harvey partition theories 
of the authors based on the Euler and Timoshenko beam theories. The Wang-Harvey Euler beam 
partition theory seems to offer the best and most simple explanation for all the experimental 
observations. No recourse to fracture surface roughness or new failure criteria is required. It is in 
excellent agreement with the linear failure locus and is significantly closer than other partition 
theories. It is also demonstrated that the global partition of energy release rate when using the 
Wang-Harvey Timoshenko beam or averaged partition theories or 2D elasticity exactly 
corresponds with the partition from the Wang-Harvey Euler beam partition theory. It is therefore 
concluded that the excellent performance of the Wang-Harvey Euler beam partition theory is 
either due to the failure of materials generally being based on global partitions or that for the 
specimens tested, the through-thickness shear effect is negligibly small. Further experimental 
investigations are definitely required. 

Keywords: Composite materials, Failure criterion, Interlaminar fracture, Mixed-mode tests, 
Mixed-mode partition, Spalling 

1. Introduction 

In brittle, isotropic, homogeneous materials, it is well known that cracks propagate under pure 
mode I conditions [1,2]. The direction of propagation is determined by the need to maintain these 
conditions. This is known as the ‘criterion of local symmetry’. However, in cases where cracks 
exist between interfaces, cracks are often constrained to propagate along these interfaces because 
they represent a plane of weakness. Fibre-reinforced composite laminates are examples of such 
materials. They are highly inhomogeneous and anisotropic. In these materials, interface cracks 
correspond to delaminations. In this paper, delaminations are simply referred to as ‘fractures’ or 
‘cracks’ in order to keep consistency with the description of fracture mechanics. In interface 
cracking, cracks generally propagate as a mixed mode and can even propagate under pure mode 
II loading. Since materials have different fracture toughness in each mode, fracture mode 
partitions play a key role in the propagation of fractures and in the development of crack 
propagation criteria. 
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NOMENCLATURE 

 length of fracture 
 extensional stiffness of upper, lower and intact beams 

 beam width 
 coupling stiffness of upper, lower and intact beams 

 bending stiffness of upper, lower and intact beams 
 Young’s modulus 

 total, mode I and mode II energy release rates 

 total, mode I and mode II critical energy release rates 

 shear modulus 

 thicknesses of upper, lower and intact beams 

 second moments of area of upper, lower and intact beams 

 total, mode I and mode II stress intensity factors 

 total, mode I and mode II critical stress intensity factors 

 bending loads acting on upper and lower beams 

 bending moments on upper, lower and intact beams at the crack tip 

 axial loads acting on upper and lower beams 

 axial forces on upper, lower and intact beams at the crack tip 
 

 pure mode II relationships from the first and second set respectively 

 thickness ratio  
 pure mode I relationships from the first and second set respectively 

 non-dimensional crack-depth coefficient in spalling 
 crack loading coefficient in spalling 

 
Abbreviations 
CLT classical lamination theory 
DCB double cantilever beam 
ELS end-loaded split 
ENF end-notched flexure 
FEM finite element method 
FRMM fixed-ratio mixed-mode 
MMB mixed-mode bending 
PEEK Polyether ether ketone 
QUAD4 four-node quadrilateral with linear displacement field 
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The problem of interface cracking has been studied extensively using varied approaches. 
Broadly the work can be categorised as analytical, numerical or experimental. In this work, the 
performance of a number of analytical partition theories is investigated by comparing their 
predictions with experimental results available in the literature. 

Some of the earliest analytical work was carried out by Williams [3], who made significant 
contributions to the understanding. He successfully identified one pair of pure mode conditions 
(mode I and mode II), which are valid for Euler double cantilever beams (DCBs) with bending 
moments alone. Unfortunately, the other set of pure mode conditions and the stealthy interactions 
between pure modes were missed in his work. As a result, his partition theory is only able to give 
the correct partition for symmetric DCBs. Another piece of pioneering work [4] was given by 
Schapery and Davidson, which is also for DCBs based on Euler beam theory. This partition 
theory is not able to give the Williams pair of pure modes [3] and is a combined numerical and 
analytical theory. Schapery and Davidson also claimed that Euler beam theory did not provide 
quite enough information to obtain a decomposition of energy release rate into opening and 
shearing mode components. Suo [5], Suo and Hutchinson [6] and Hutchinson and Suo [7] 
developed a partition theory for isotropic DCBs using 2D elasticity and stress intensity factors, 
which are analytical except for one parameter, which is determined numerically. Ref. [7] 
reported that Ref. [3] contained conceptual errors. Bruno and Greco [8] presented an analytical 
mode-partitioning theory for bi-layered Euler beams. They correctly identified a couple of pure 
modes but unfortunately they missed the stealthy interactions. Therefore the partition is in error. 
Several recent research works on the topic are quoted here among many others. They are Wang 
and Qiao [9], Nguyen and Levy [10], Yan and Shang [11], Ouyang and Li [12] and Zou et al. 
[13,14]. 

Recently the authors have developed completely analytical theories for one-dimensional 
fractures in straight beams and axisymmetric plates made of either isotropic or laminated 
composite materials. These theories are based on the classical and first-order shear deformable 
beam and plate theories. The work has been reported on several occasions [15-19]. Full details 
are available in Refs. [19-21]. In these theories, two sets of pure mode pairs were identified. In 
the Wang-Harvey Euler beam partition theory, the two sets of pure mode pairs are distinct and 
this leads to stealthy interactions. Under the Wang-Harvey Timoshenko beam partition theory, 
the two sets of pure mode pairs exactly coincide and there are no stealthy interactions. It was also 
found that the average of these two extreme cases provides a very accurate approximation to the 
2D elasticity result from the Suo-Hutchinson partition theory [5-7]. The theories were validated 
through extensive numerical simulations. 

On the experimental front, some early work is given by Thouless [22] and Thouless et al. [23]. 
These works looked at interfacial failure under mixed-mode loading and the spalling of brittle 
plates, respectively. The latter reference makes comparisons between the experimental results 
and the Suo-Hutchinson partition theory [5-7]. Many other experimental investigations make use 
of Williams’ partition theory [3] to set up test apparatus and to partition the experimentally 
measured energy release rate [24-28]. 

In this work, a number of existing analytical partition theories, namely the Williams [3], the 
Suo-Hutchinson [5-7] and the Wang-Harvey [19-21] partition theories are assessed using results 
from the various experimental tests described in the literature. The original contribution of this 
paper is to assess the relative performance of each theory in predicting the experimental 
observations. The performance of the Wang-Harvey theories has not been assessed in this 
manner before. Validation of the Wang-Harvey theories has only been carried out with numerical 
results from the finite element method (FEM). Experimental validation of these theories is also 
very important. In addition, the final expressions for energy release rate partition in the Wang-
Harvey theories [19-21] are presented in a more convenient format for usage. 
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The structure of the paper is as follows. The different partition theories are given in Section 2. 
A discussion on and insights into the differences between local and global partitioning is given in 
Section 3. This has been the subject of much discussion in the literature [25-27]. In Section 4, 
data from the various experimental tests described in the literature is analysed using the different 
partition theories. Finally, conclusions are given in Section 5. 

2. Mixed-mode partition theories 

2.1. The Wang-Harvey partition theories 
The Wang-Harvey partition theories are for one-dimensional fractures in straight beams and 

axisymmetric plates made of either isotropic or laminated composite materials [19-21]. Full 
details of the theories are given in Refs [19-21]. In this paper, only the final expressions for 
energy release rate partition are presented in a format, which is considered the most convenient 
for use by academic researchers and industrial engineers. In previous work [19-21], they have 
been presented in a format, which is most revealing of the underlying mechanics.  

Fig. 1 (a) shows a DCB with its associated geometry, two tip bending moments, and two tip 
axial forces. The partition is based on the bending moments and axial forces acting at the crack 
tip B, which are shown in Fig. 1 (b). According to the Wang-Harvey Euler beam partition theory 
[19-21], the mode I and II components of the total energy release rate, denoted by  and  
respectively, are 

  (1) 

  (2) 

where  and  represent the first set of pure mode I and II relationships respectively and  

and  represent the second set [19-21]. They are recorded here. 

  (3) 

  (4) 

  (5) 

  (6) 
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  (7) 

  (8) 

 

 (9) 

  (10) 

  (11) 

  (12) 

  (13) 

  (14) 

The remaining variables in Eqs. (1) and (2) are 

  (15) 

  (16) 

where 
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  (17) 

  (18) 

The extensional, coupling and bending stiffness are denoted by ,  and  respectively. 
Note that these quantities take different values under the plane-strain assumption from those 
under the plane-stress assumption. Readers are referred to Li’s work [29,30] for details. 
However, there is no difference between the two assumptions in the following development. 

  (19) 

  (20) 

  (21) 

The range of  is 1 and 2, which refers to the upper and lower sub-laminates respectively. No 
subscript is used for the intact part of the laminate.  is therefore the extensional stiffness of the 
upper beam and  is the extensional stiffness of the intact beam, etc. 

According to the Wang-Harvey Timoshenko beam partition theory [19-21], the mode I and II 
components of the energy release rates denoted by  and  respectively are 

  (22) 

  (23) 

where 

  (24) 

  (25) 

Finally, the averaged partition theory is the average of the Wang-Harvey Euler and 
Timoshenko beam partitions. This partition has been found to give an excellent approximation to 
the partition from 2D elasticity [19-21]. The mode I and II components of the energy release rate 
from the averaged partition theory are denoted by  and  respectively. They are 

  (26) 
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  (27) 

These three partitions are easily reduced for isotropic materials [19,20]. A thickness ratio 
 is now introduced. The present Euler beam partitions for isotropic beams reduce to 

[19,20] 

  (28) 

  (29) 

where  and  are still given by Eqs. (15) and (16) and 

  (30) 

The pure mode relationships are now as follows: 

  (31) 

  (32) 

  (33) 

  (34) 

  (35) 

  (36) 

  (37) 

The isotropic  and  for use in Eqs. (15) and (16) are 

  (38) 

  (39) 

The present Timoshenko beam partitions for isotropic beams reduce to [19,20] 
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  (40) 

  (41) 

where  and  are given by Eqs. (24) and (25). The averaged partition is obviously still 
given by Eqs. (26) and (27). 

Finally, the present partition theories are presented for the special case of spalling (sub-surface 
cracks), where . The present partitions using the Euler beam, Timoshenko beam and 
averaged fracture mode partition theories are respectively 

  (42)

  (43) 

  (44) 

The total energy release rate  is the same for all three theories 

  (45) 

Note that for the tests considered in this paper, the through-thickness shear effect due to 
applied shear forces is small and is safely ignored. Also in these tests, contact between the upper 
and lower beams is not a concern and so the contact behaviour is only briefly described here. For 
Timoshenko beams, crack tip running contact occurs, which results in pure mode II fractures. For 
Euler beams, the contact behaviour depends on the relative geometric and material properties of 
the upper and lower beams and the mode partition can either be pure mode II or mixed. Contact 
has been considered in full detail in previous work by the authors [20,21]. 

2.2. The Suo-Hutchinson partition theory 
Suo and Hutchinson [5-7] considered a crack in a semi-infinite strip of orthotropic material 

and derived expressions for the mixed-mode intensity factors, which are analytical except for one 
parameter, which is determined numerically. Good agreement between the Suo-Hutchinson 
partition theory and the averaged partition theory has been observed [19-20]. This partition is 
now reproduced here. For consistency, the notation has been changed where appropriate to match 
the conventions used elsewhere in this paper. This partition theory assumes that a square-root 
singular field exists, so the partition is expressed in terms of stress intensity factors. The mode I 
and II stress intensity factors  and  are 
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  (46)  

  (47)  

where  and  are linear combinations of the applied loads: 

  (48)  

  (49)  

  (50)  

The geometric factors ,  and  are functions of : 

  (51)  

The quantity  is determined from the following approximate formula: 

  (52)  

For the spalling case, taking the limit where , gives 

  (53)  

  (54)  

For comparison with the energy release rates from the beam theories, the relationship between 
energy release rate and stress intensity factor for plane stress is 

  (55)  

Again, for plane strain,  may simply be replaced by . 

2.3. The Williams partition theory 
Williams was one of the first researchers to attempt to partition a mixed mode [3]. His theory 

has been applied to the various test methods for laminates [3,24,25]. Some work has been also 
been done to experimentally assess the performance of the theory [25-27]. His pioneering work 
was partially successful, in that this theory correctly predicts a pair of pure modes and can also 
give the correct partition for a symmetric DCB, i.e. . However, it cannot identify the other 
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pure modes and missed the stealthy interactions between pure modes [18-20]. The limitations 
have been reported many times and by several different researchers [7,20]. 

The Williams partition, denoted by  and , is now reproduced here. Again, for 
consistency, the notation has been changed where appropriate to match the conventions in this 
paper. 

  (56)  

  (57)  

For the spalling case, taking the limit where , gives 

  (58)  

3. Nature of local and global partitions 

There is an important difference between a local partition and a global partition. Simply put, 
local pureness is defined with respect to the crack tip B whilst the global pureness is defined with 
respect to the  region (shown in Fig. 1), which is the region mechanically affected by the 
presence of the crack. Mathematically, the difference is in the integration limits of the crack 
closure integral: the global partition is calculated by including the whole crack influence region 
in the integration limits; the local partition only considers the near-crack tip region. Note that the 
total energy release rate is not affected by the limits of the crack closure integral [31], however 
the partition of energy release rate is affected [20,21] and this will be further demonstrated and 
explained later in this section by numerical means. Full analytical details are available in Refs. 
[20,21]. 

It has been mathematically shown by the authors [20,21] that the Wang-Harvey Euler beam 
partition theory has two sets of pure modes (the first  set and the second  set), which 
are both locally and globally pure. The local and global partitions are therefore the same when 
using the Wang-Harvey Euler beam partition theory. For the Wang-Harvey Timoshenko beam 
partition theory, there are two sets of locally pure modes, which exactly coincide on the first 

 set from the Wang-Harvey Euler beam partition theory. There are also two sets of globally 
pure modes and they are the same as the pure modes from the Wang-Harvey Euler beam partition 
theory. Therefore, when using the Wang-Harvey Timoshenko beam partition theory, the local 
partition exhibits no stealthy interaction (because the two sets of local pure modes coincide) and 
is different to the Wang-Harvey Euler beam partition theory. However, the global partition is the 
same as the Wang-Harvey Euler beam partition theory. Since the averaged partition theory is the 
average of the Wang-Harvey Euler and Timoshenko beam partition theories, it behaves in the 
same way. The global partition is the same as the Wang-Harvey Euler beam partition theory but 
the local partition is generally different. Note that in all the cases discussed, the  set of pure 
modes is always both locally and globally pure. This is why it provides the complete basis for 
mode partitioning. 
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This difference between local and global partitions is important because it is not known which 
is more appropriate for determining fracture propagation between interfaces and under what 
circumstances. In the following section, published experimental data will be used to try to make 
an assessment of this. 

It is simple to show that the Wang-Harvey global Timoshenko beam and averaged partition 
theories are the same as the Wang-Harvey Euler beam partition theory. The authors have 
developed an FEM simulation capability, which is based on the Euler and Timoshenko beam 
theories and 2D elasticity. Normal and shear point interface springs with very high stiffness are 
used to model perfectly bonded plies. The energy release rate partition is calculated using the 
virtual crack closure technique in conjunction with these interface springs [32-35]. The number 
of spring pairs used in the calculation of energy release rate can easily be adjusted, from one 
spring pair for the local partition to many spring pairs to approach the global partition. 

Numerical tests were carried out on the DCB shown in Fig. 1 (a). The Young’s modulus is 
, the Poisson’s ratio is  and the shear modulus is . 

The intact length is , the crack length is  and the width is . The thickness is 
 with . Therefore, the thickness ratio is . The DCB is under tip 

bending moments  and  which varies from -10 to 10. There are no axial forces or 

shear forces in this example. An interface spring stiffness of  was used for a rigid 
interface. Contact was not considered, although it has been dealt with in detail in previous work 
by the authors [20,21]. 

Firstly, two layers of uniformly distributed linear Timoshenko beam elements were used to 
model the specimen. One, ten, twenty and thirty spring pairs were used in the virtual crack 
closure technique to calculate the energy release rate partition  and . The numerical energy 

release rate partitions for different values of  are shown in Fig. 2 along with the Wang-
Harvey Timoshenko and Euler beam partition theories. In the legend, the abbreviations ‘1 SP’, 
’10 SP’, etc. are used to indicate one and ten spring pairs being used in the calculation of  and 

. It is seen that as the number of spring pairs is increased, the numerical partition closely 
approaches the Wang-Harvey Euler beam partition theory, which as has just been described, is 
also the Wang-Harvey global Timoshenko beam partition theory. 

Secondly, six layers of uniformly distributed plane stress four-node quadrilateral (QUAD4) 
elements were used to model the specimen. Again, the energy release rate partition  and  
was calculated using the virtual crack closure technique with one, ten, twenty and thirty spring 
pairs. The numerical energy release rate partitions for different values of  are shown in Fig. 3 
along with the Wang-Harvey Euler beam and averaged partition theories. As expected, as the 
numerical partition becomes a global one, it closely approaches the Wang-Harvey Euler beam 
partition theory. 

Note that although in both cases thirty spring pairs represents a fairly large proportion of the 
length of the specimen, this is due to the discrete nature of the FEM. Using more elements along 
the length shows that a similarly converged global partition can be obtained over a shorter length. 
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4. Experimental validation 

4.1. A note on mixed-mode failure criteria 
Before reviewing experimental data from the literature and making comparative analyses, it is 

worth making some comments on mixed-mode failure criteria. In Section 4.2 and 4.3, some 
calculations and comparisons are made using the linear failure criterion, given by Eq. (59). Many 
different mixed-mode failure criteria have been suggested for predicting delamination growth. 
Reeder [28] gave a comprehensive review of them. 

The linear failure criterion is the one most often used in the literature [28]. In addition there is 
a wealth of data that either strongly supports the criterion [34-39], or suggests criteria that are 
close to it [39-42]. 

Therefore, in this work, the linear failure criterion is expected to be reasonably accurate and to 
give a good approximation to the failure locus, against which different analytical partition 
theories can be compared. This is also the approach used by Charalambides et al. [26]. 

4.2. Asymmetric DCB test 
The asymmetric DCB test is shown in Fig. 4 (a). Equal and opposite bending moments are 

applied to the upper and lower arms of an asymmetric beam specimen. The crack tip forces are 
therefore  and . Experimental measurements of the total critical 

energy release rate  for epoxy-matrix/carbon-fibre specimens with various values for  and 

 are given in Table 1 [26]. 

If the failure locus and critical energy release rates  and  for the material are known, 

then for a given partition theory the total critical energy release rate  for a specimen can be 
inferred. The linear failure locus is 

  (59) 

As noted in Section 4.1, the actual failure locus is generally not far from this empirically 
suggested form [26]. Hashemi et al. [24] provide critical energy release rate values. From the 
DCB test ; from the end-loaded split (ELS) test 

 and from the end-notched flexure (ENF) test 

. In this work the values used are:  and 

, which is an average of the two pure mode II tests and permitted by the error 

margins of both tests as well. From Eq. (59), the mode I energy release rate partition  

from a given partition theory predicts the following total critical energy release rate : 

  (60) 

In Table 1, the  values predicted by the various partition theories in Section 2 for each 

specimen are compared against the experimentally measured  values. Both the Wang-Harvey 
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Euler beam theory and the Williams partition theory predict that the fracture is pure mode I for 

all values of  and . This is the  pure mode I mode [19,20]. Therefore 

 for all the specimens. The experimental  values show very small variation. As the 

specimen thickness ratios  changes from 1.33 to 4.11, the change in measured  is only 

0.03 kN/m. Given that the error margin for  is 0.015 kN/m and the experimental  values 
are distributed evenly around 0.27 kN/m, the Wang-Harvey Euler beam and Williams theories 
are certainly both compatible with the experimental results. 

The Wang-Harvey Timoshenko beam partition theory shows significantly more variation and 
in the majority of cases is not close to the experimental  values. In particular, for the thickest 
specimen for which  (the length is 120 mm, giving an aspect ratio of 12, which is 
very low), the measured  is not any closer to the value predicted by the Wang-Harvey 
Timoshenko beam partition theory. Since the Wang-Harvey Timoshenko beam theory might be 
expected to give a better prediction for low aspect ratios, this implies that perhaps the partition 
that determines failure is global and therefore given by the Wang-Harvey Euler beam partition 
theory. Observations from individual specimens must be treated with caution however and this 
possibility is far from conclusive. 

The Suo-Hutchinson and averaged partition theories are very similar, as expected [20]. These 
two theories show a gradual increase in  with increasing , which is in agreement with the 
experimental results. Each result is also within the experimental error margin. It is therefore 
concluded that all theories, except the Wang-Harvey Timoshenko beam partition theory, are 
compatible with these experimental results. From this test, it is not possible to make further 
conclusions. 

4.3. FRMM test 
Fig. 4 (b) shows a test in which a bending moment  is applied to the upper arm only of an 

asymmetric beam specimen. The crack tip forces are therefore  and , 

which produces a mixed mode. The total critical energy release rate  can be measured 
experimentally. 

Charalambides et al. [26] took experimental measurements of  for multiple epoxy-
matrix/carbon-fibre composite specimens, loaded in the fixed-ratio mixed-mode (FRMM) test, 
and partitioned them into  and . The partition was made using the Williams partition 

theory. These values of  and  are the black, filled circle markers in Fig. 5. Since both the 

partition of  and the method by which it was partitioned are known, there is sufficient 
information to re-partition the data according to the different partition theories in Section 2. 

First, the thickness ratio  must be determined for each specimen. Because the total  is 

known from , the critical load  can be determined for each data point. Under this 
critical load and using the Williams partition theory, only one value of thickness ratio  can give 
the  and  values. The thickness ratio  of each specimen can therefore be calculated using 

Eq. (56) or Eq. (57). Now the experimentally measured  can be partitioned into  and  
for each specimen, characterised by its thickness ratio , using the different partition theories in 
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Section 2. The Suo-Hutchinson partition and the three Wang-Harvey partitions are also presented 
in Fig. 5. The linear failure locus is also shown. 

From Eq. (59), the importance of having a significant difference between  and  can be 

seen. If , then the failure locus is not affected by the partition and all data points will 

lie on the linear failure locus regardless of the partition. However if , then the partition 
does affect the failure locus. This has also been pointed out by Hashemi et. al. [27]. To assess the 
quality of the competing theories, it is therefore better to use a more brittle thermoset-matrix 
material, where there is usually a larger difference [26]. The epoxy-matrix/carbon-fibre 
composite specimens fulfil this requirement. 

From Fig. 5, it is seen that the Wang-Harvey Euler beam partition theory performs much 
better than the other partition theories when compared with the linear failure locus. This could be 
because the specimens tested have a high aspect ratio (~27) and therefore essentially behave as 
Euler beams. As has been shown in Section 3, global measurements of  correspond to the 
Wang-Harvey Euler beam partition. Alternatively, it is also therefore possible that failure, at least 
in the experimental cases considered, is based on the Wang-Harvey global partition. It is not 
possible to distinguish which is the correct reason from these results. This latter possibility was 
also the conclusion of Charalambides et al. [26]. A trend line, which is represented by the black 
dashed line in Fig. 5, has been plotted through the Wang-Harvey Euler beam partition. For 
comparison, a solid black trend line has also been plotted through the Williams partition. For 
clarity, Fig. 6 shows the linear failure locus and these two data sets with their corresponding 
trend lines in isolation. It is seen that the Wang-Harvey Euler beam partition gives much closer 
agreement with the expected linear failure locus and expected  and  than the Williams 
partition. Quantitative statistical measures can also be given for better comparison. Comparing 
the Wang-Harvey Euler beam partition against the linear failure locus, the root mean square of 
the residuals is 0.025 kN/m. This is the ‘standard error’ or ‘standard deviation’. For a normally 
distributed deviation, 68.3% of the data points would lie within one standard deviation of the 
linear failure locus and 95.5% within two standard deviations. For the Williams partition, the 
standard error (also against the linear failure locus) is 0.040 kN/m, which is 1.6 times greater 
than that from the Wang-Harvey Euler beam partition. 

Now consider the other partition theories shown in Fig. 5. The Wang-Harvey Timoshenko 
beam partition of the experimental  measurements forms a separate vertical curve. The Suo-
Hutchinson and the averaged partitions are very similar as expected and form another curve half 
way between the curves from the Wang-Harvey Euler and the Timoshenko beam partitions. 
Since the linear failure locus is generally regarded to be a good approximation to the actual 
failure locus, it must be concluded that, at least for these specimens, the Wang-Harvey local 
Timoshenko beam and averaged partition theories and the Suo-Hutchinson partition theory 
cannot give the partition that controls the fracture propagation. As stated above, there are two 
possible reasons for this. It might be because of the local nature of all these partition theories. If 
failure is dependent on the global partition then only the Wang-Harvey Euler beam partition 
theory can give the right partition. Alternatively, it could be because these specimens approach 
Euler beams in their behaviour because of their high aspect ratio. 

Further evidence for the correctness of the Wang-Harvey Euler beam partition theory is given 
in Fig. 7. The figure responds to the inevitable question: if the Wang-Harvey Euler beam 
partition theory is the correct one and the linear failure locus is a good approximation, can it 
successfully predict the curve of the Williams partition? To answer the question, the Wang-
Harvey Euler beam partition theory was used to calculate the thickness ratio  for multiple 
points on the linear failure locus (the solid black line in the figure). Then the total critical energy 
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release rates  for these ‘imaginary specimens’ were repartitioned using the Williams partition 
theory. These partitions are represented by the black dashed line. The experimental values, 
partitioned using the two theories, are also shown. It is seen that the dashed line very closely 
predicts the curve of the Williams partition of the experimental measurements. Furthermore, the 
dashed line strongly resembles the ‘general criterion for mixed mode failure’ suggested by 
Charalambides et al. [26] on the basis of the Williams partition of the experimental results. This 
criterion is also plotted in figures in the paper by Hashemi et al. [27]. 

In summary, under the assumption that the linear failure locus is accurate, the Williams 
partition and his suggested failure criterion can be completely explained by using the Wang-
Harvey Euler beam partition theory without resorting to correction factors for surface roughness 
and friction, as is done in Ref. [26]. In fact, if the Wang-Harvey Euler beam partition theory is 
correct, then the Williams partitions are exactly where they would be expected to be. It is 
proposed by the authors that the Wang-Harvey Euler beam partition theory offers the best and 
most simple explanation for all the observations, without having to propose extra mechanical 
effects. 

Two additional sets of experimental data from the FRMM test are available from work by 
Hashemi et al. [27]. The first set of data is also for epoxy-matrix/carbon-fibre composite 
specimens. The Wang-Harvey Euler beam and Williams partitions of this experimental data with 
their trend lines and the linear failure locus are shown in Fig. 8. It is seen that the Wang-Harvey 
Euler beam partition is in excellent agreement with the linear failure locus. The standard error 
when compared with the linear failure locus is 0.018 kN/m. Once more, the Williams partition is 
not close to the linear failure locus. The standard error is 0.043 kN/m. The Suo-Hutchinson 
partition is not shown for clarity, but as before, it forms a curve approximately normal to the 
linear failure locus. 

The second set of experimental data from Hashemi et al. [27] is for Polyether ether ketone 
(PEEK)-matrix/carbon-fibre composite specimens. There seems to be some significant variation 
in the literature for the critical energy release rates [24,27,28]. In this work the values from 
Hashemi et al. [24] are used. These values also appear to be the most reliable since they are 
directly from pure mode testing. Considering here only crack propagation (not initiation), from 
the DCB test  and from the ELS test . The 
Wang-Harvey Euler beam and Williams partitions of the experimental measurements are plotted 
in Fig. 9. Both partitions are approximately linear, very close to each other and far from the 
linear failure locus. The distance from the failure locus is likely to be due to values of critical 
energy release rate used, which are material constants and not determined by the partition theory. 
The uncertainty surrounding these values has already been pointed out. The fact that both 
partitions are close to each other and approximately linear is due to the critical energy release 
rates being very close to each other , which is in contrast to the epoxy-

matrix/carbon-fibre composite specimens where . As pointed out above, when 
this is the case, although the individual partitions may be different, they will all lie on the same 
linear failure locus because the failure locus becomes 

  (61) 

Therefore PEEK-matrix/carbon-fibre composite specimens are not suitable for assessing the 
quality of the competing theories. Donaldson [39] came to this same conclusion after 
experimental testing and comparisons with several mixed-mode fracture criteria. 
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4.4. Spalling test 
Thouless et al. [23] investigated spalling in brittle plates. Spalling is where cracks occur very 

close to the surface, i.e. . Fig. 10 shows the specimen and loading configuration. The 
spall, which has a thickness  at the crack tip, is loaded axially by a force , which is offset a 
distance  from the free surface. It therefore generally causes a tip bending moment as well. Eq. 
(62) describes the crack tip forces. 

  (62)  

When the fracture propagates, it will propagate in pure mode I only in some direction [1,2,23]. 
As it propagates, it stabilises at a constant distance from the free surface. Thouless et al. 
described a series of experiments on PMMA and glass in which  is varied and the critical load 
and value of  are determined. For convenience they introduced two quantities: the non-
dimensional crack depth coefficient  

  (63)  

and the crack-loading coefficient  

  (64)  

During stable propagation, the partition theories in Section 2 can be used to predict these 
values, which have been measured experimentally. Thouless et al. [23] used the Suo-Hutchinson 
partition (assuming a singular field). The resulting equations for the partition, rewritten as energy 
release rates for easier comparison with the other theories, are 

  (65)  

  (66)  

Setting  allows  to be found. Substituting this value in Eq. (65) and using the relation 
given by Eq. (55) gives 

  (67)  

It is seen that  is independent of material properties whilst  is not. Thouless et al. [23] 
provided approximate values of for  for PMMA and for glass. 

The Williams partition is as follows: 

  (68) 
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For stable crack propagation with , the Williams partition theory requires that , 
i.e. an infinite thickness spall, which is obviously not valid for spalling when  is 
assumed. To overcome this, Charalambides et al. [26] postulated an additional sliding component 
to  and derived a mixed-mode failure criterion based on the ‘fracture surface roughness’. 

The partitions from the three Wang-Harvey partition theories are given by Eqs. (69) to (71). 

  (69)  

  (70)  

  (71)  

The values of  and  from the Hutchinson-Suo and Wang-Harvey partition theories for both 
materials are given in Table 2. The Wang-Harvey partition theories give the same results in this 
case, so are grouped together. 

First, consider the crack-loading coefficient . This is dependent on the critical mode I stress 
intensity factor . From Thouless et al. [23], this is ~1.0 MPa-m1/2 for PMMA, which is in 
agreement with the literature. Neither the Suo-Hutchinson nor the Wang-Harvey partition 
theories are in particularly good agreement with the measurement, although the value from the 
Wang-Harvey theories is the closest. However, the sensitivity of  to the value of  is noted. 
Using the Wang-Harvey Euler beam partition theory, if  instead of 3.0 then , 
which is much closer to the measured value. For glass, Thouless et al. gave 

. Using this value, the value of  from the Wang-Harvey partition theories 
agrees quite well with the measured value. The Wang-Harvey partition theories again have better 
agreement than the Suo-Hutchinson one. However, other literature [43,44] quotes a higher value 
between 0.7 and 0.8 MPa-m1/2. If the value of 0.75 MPa-m1/2 from Ref. [43] is used then, as 
shown in Table 2, the Wang-Harvey partition theories are then exactly in agreement with the 
measured value of . 

Now consider the crack depth coefficient . For all theories, this is independent of material 
properties. Experimentally, there is some variation between materials. As before, neither the Suo-
Hutchinson values nor the values from the Wang-Harvey theories are very close to the measured 
values. For the PMMA specimens, the Wang-Harvey partitions are the closest with 37.5% 
discrepancy, and for glass, the Suo-Hutchinson partition is the closest with 29% discrepancy. 
Thouless et al. [23] published a photograph of three spalled specimens of PMMA. These are 
reproduced with permission in Fig. 11. They are potentially revealing because a scale is given 
and values of  and  can be measured from the photograph. Note that the load was evenly 
applied to an elevated region on the specimen, so  is half the thickness of this elevated region. 
Black lines have been added over the specimens in Fig. 11 to indicate the regions over which  
and  were averaged. From left to right, the measured values of  are 3.5, 3.4 and 3.9, which 
are significantly less than the value of 4.8 given by Thouless et al. and much closer to the value 
predicted by the Wang-Harvey partition theories. This photograph was presented by Thouless et 
al. to indicate the consistency of the measured  values. Therefore these measurements should 
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be representative of the whole sample of experimental measurements. No photographs are 
available for the glass. The authors are planning to replicate the experiments of Thouless et al. to 
either confirm or refute the possibility raised above. 

Overall, it can be concluded that the Wang-Harvey partition theories perform better than the 
Suo-Hutchinson and Williams partition theories in modelling this test. Observed discrepancies 
can be explained, but further experimental data is needed to confirm these explanations. 

5. Conclusions 

The performance of five different partition theories has been investigated by using 
experimental results from the literature for a range of tests. The partition theories used are the 
Williams theory [3], the Suo-Hutchinson theory [5-7] and the Wang-Harvey partition theories of 
the authors [19-21], based on the Euler and Timoshenko beam theories. 

The Wang-Harvey Euler partition theory offers the best and most simple explanation for all 
the experimental observations. There are two possible reasons for this: 

1. The aspect ratios of the specimens, which have been tested, are high enough for their 
behaviour to be essentially that of Euler beams. The most suitable partition theory 
would therefore be the Wang-Harvey Euler beam partition theory. If this is correct, 
then for some specimens the Wang-Harvey Timoshenko beam or averaged partition 
theories might provide the best result. This seems less likely though because for the 
thicker specimens tested, where the through-thickness shear effect is greater, there is 
no tendency towards the Wang-Harvey Timoshenko beam partition. 

2. The global partition from the Wang-Harvey partition theories, which has been shown 
to be equal to the Wang-Harvey Euler beam partition, is the one that determines 
failure. 

All the partition theories, except the Wang-Harvey Timoshenko beam partition theory, are 
compatible with the results of the asymmetric DCB test, due to the error margin of the 
measurements. No further conclusions were possible from this test. For the FRMM test, the 
Wang-Harvey Euler beam partition theory partitions the measurements of the total  so that the 

resulting  and  closely follow the expected linear failure locus. Under the assumption that 
the linear failure locus is accurate, the Williams partition and his suggested failure criterion can 
be completely explained by using the Wang-Harvey Euler beam partition theory. No recourse to 
extra mechanical effects, such as fracture roughness and friction is required. In fact, if the Wang-
Harvey Euler beam partition theory is correct, then the Williams partitions are exactly where they 
would be expected to be. For this test, the other partition theories give very different partitions 
and form curves approximately normal to the linear failure locus. 

Finally, this paper has looked at results from spalling tests. In these tests, the spall stabilises at 
a constant distance from the free surface, allowing these interfacial partition theories to be used, 
and propagates in pure mode I. The Wang-Harvey theories all predict the same crack depth and 
energy release rate. Generally, these theories give better agreement with the measured values 
than the Suo-Hutchinson partition theory. In some cases, values from the Wang-Harvey theories 
are in very close agreement with the measured values. When this is not the case, plausible 
explanations are offered. First the crack-loading coefficient  is particularly sensitive to the 
crack depth, represented by . A small change in  can reconcile the value of  predicted by 
the Wang-Harvey theories with the measured value. In addition, by examining scaled photos of 
the spalled specimens, there appears to be a discrepancy between the measured and quoted values 
of  in Ref. [23]. Measurements from the photos by the authors give much better agreement with 
the values from the Wang-Harvey partition theories. 
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Figure captions 

Fig. 1: A DCB (a) general description (b) crack tip forces. 
Fig. 2: Analytical and numerical Timoshenko beam partitions of local and global energy release 
rate  of a DCB with varying  and . 
Fig. 3: Analytical and numerical 2D elasticity partitions of local and global energy release rate 

 of a DCB with varying  and . 
Fig. 4: Tests with asymmetric beam specimens (a) Asymmetric DCB test (b) FRMM test. 
Fig. 5: A comparison of the FRMM test [26] partitions from various partition theories and the 
linear failure locus for epoxy-matrix/carbon-fibre composite specimens. 
Fig. 6: A comparison of the FRMM test [26] partitions from the Williams and Wang-Harvey 
Euler beam partition theories and the linear failure locus for epoxy-matrix/carbon-fibre 
composite specimens. 
Fig. 7: The linear failure locus for epoxy-matrix/carbon-fibre composite specimens repartitioned 
using the Wang-Harvey Euler beam partition theory into the expected Williams partition curve 
and the FRMM test [26] partitions from the corresponding partition theories. 
Fig. 8: A comparison of the FRMM test [27] partitions from the Williams and Wang-Harvey 
Euler beam partition theories and the linear failure locus for epoxy-matrix/carbon-fibre 
composite specimens. 
Fig. 9: A comparison of the FRMM test [27] partitions from the Williams and Wang-Harvey 
Euler beam partition theories and the linear failure locus for PEEK-matrix/carbon-fibre 
composite specimens. 
Fig. 10: Spalling in a brittle plate with an offset load. 
Fig. 11: Optical views of spalled segments of PMMA [23]. 
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Table captions 

Table 1: Values of measured critical energy release rate  for an epoxy carbon-fibre composite 
asymmetric DCB together with the values expected from the various partition theories. 
Table 2: Crack-loading coefficient  and crack depth coefficient  propagation 

constants from the various partition theories for the spalling of brittle plates. 
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Fig. 1: A DCB (a) general description (b) crack tip forces. 
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Fig. 2: Analytical and numerical Timoshenko beam partitions of local and global energy release 
rate  of a DCB with varying  and . 
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Fig. 3: Analytical and numerical 2D elasticity partitions of local and global energy release rate 

 of a DCB with varying  and . 
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Fig. 4: Tests with asymmetric beam specimens (a) Asymmetric DCB test (b) FRMM test. 
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Fig. 5: A comparison of the FRMM test [26] partitions from various partition theories and the 
linear failure locus for epoxy-matrix/carbon-fibre composite specimens. 
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Fig. 6: A comparison of the FRMM test [26] partitions from the Williams and Wang-Harvey 
Euler beam partition theories and the linear failure locus for epoxy-matrix/carbon-fibre 
composite specimens. 
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Fig. 7: The linear failure locus for epoxy-matrix/carbon-fibre composite specimens repartitioned 
using the Wang-Harvey Euler beam partition theory into the expected Williams partition curve 
and the FRMM test [26] partitions from the corresponding partition theories. 
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Fig. 8: A comparison of the FRMM test [27] partitions from the Williams and Wang-Harvey 
Euler beam partition theories and the linear failure locus for epoxy-matrix/carbon-fibre 
composite specimens. 
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Fig. 9: A comparison of the FRMM test [27] partitions from the Williams and Wang-Harvey 
Euler beam partition theories and the linear failure locus for PEEK-matrix/carbon-fibre 
composite specimens. 
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Fig. 10: Spalling in a brittle plate with an offset load. 
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Fig. 11: Optical views of spalled segments of PMMA [23]. 
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Table 1: Values of measured critical energy release rate  for an epoxy carbon-fibre composite 
asymmetric DCB together with the values expected from the various partition theories. 

    Wang-Harvey theories 

Measured Suo-Hutchinson Williams Euler Timoshenko Averaged 

             

1.33 3.85 0.26 96.4 0.28 100.0 0.27 100.0 0.27 94.2 0.28 97.1 0.27 

1.55 3.70 0.27 92.4 0.28 100.0 0.27 100.0 0.27 87.7 0.29 93.9 0.28 

1.97 3.33 0.28 85.5 0.29 100.0 0.27 100.0 0.27 75.7 0.31 87.8 0.29 

3.72 10.00 0.29 75.3 0.31 100.0 0.27 100.0 0.27 50.1 0.38 75.1 0.31 

4.11 2.86 0.29 75.2 0.31 100.0 0.27 100.0 0.27 47.4 0.39 73.7 0.32 
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Table 2: Crack-loading coefficient  and crack depth coefficient  propagation 

constants from the various partition theories for the spalling of brittle plates. 

  Measured Suo-Hutchinson Wang-Harvey theories  
(all the same here) 

Material        

PMMA ~1.0 2.4 4.8 ~0.87 7.74 ~1.22 3.0 

Glass ~0.6 0.9 6.0 ~0.52 7.74 ~0.73 3.0 

" ~0.75 0.9 " ~0.64 " ~0.91 " 
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