PART D

The Measurement of Vehicle Drag

SECTION DI

Introduction

A conclusion of Part B and the sege of the naidiand Red Coach" in Section CII show that it is essential to kncw the drag force of a vehicle accuraiceiy in order to predict its performance, The usual form of drag force expression is a second order polynomial uth vehicle velocity as the indepenient variable. The sucond orcer term $1 s$ called the "aerociynamichdrag, while the constant ond linear terms together are aaid to be the "rolling resistance". The form of this , expression is given in Section B3.

It is necessary to study therefore, the techniques available for drag measurement and the silitability of the usual form of the drag expression. The study of the techniques availabie in Section D2 is an extension, in racher more detail, of the instrumentation review 1n Section 12, subsection 8. It is showi in Part D that the Fieceleration" test is a auitable technique and has tine odvantage that it is cheap to conduat and that it is accurete, since it has been used as the beais of ensessment of uind tunnel tests (24); Firther, it yields the full drag Sorce, both aerodynsmic and rolling and caters to some extent for the interection of the paraneiers affecting the rolling resiatance mentioned in Section B3. The deceleration test may be dervaloped therefore to provide data in order to assess the suitability of the usual form of the drag expreszion.

Also, the Department of Transport Technology, Loughborough University of Technology, is develoying its own vehiclé speed meastrement and data reduction equipment. The deceleration teat forms a convenieut means of assessing the accuracy and repeatability of different instrument sjstoms.

Part D therefore, develops the deceleration test as a means of obtaining the drag coefficients of a vehicle by providing answers to the main objections to the use of the deceleration test. These objections are the effect of wind speed and the tedious data reduction. Further, a built-in checking procedure is provided.
Notes The data reduction technique for the deceleration test
contained in Part D togetber with details of the
instrumentation under development have been published
In a paper by G.G. Luces and J. Britton, read at the
Aerodynemics of Eoad Vehicles oymposium, City University,
November, 1969.

SECTION 12

Rolling or tyre resistancs

There are two methods in current use for deteraining the rolling resistance of a tyre. The first is to enclose a test wheel in a box and to tow the box using a load cell in the tow bar. The box is designed to eliminate the aerodynamic drag of the tost 4 hanl itself. The test wheel may be loaded by placing weights in panniers fixed to the tost wheel frame. Such a rig is described and illustrated in the Jamary 1967 edition of the Automotive Design Engineor (2).

The main disadvantage with this type of rig is that there is little control of road surface or of tyre temperature. Both these factors can have an effect upon tyre rolling resiatance (see Part B, section 3).

The second method of measuring tyre rolling resistance is to load the teat wheel against a rotating drum of large diameter. Because - closer control can be made with this type of rig, it is Pavoured even though the surface in mounco ditis the tyro is curved rather than flat. Allowance has to be made for the curved surface when interpreting the results.

The usual practice, therefore, is for the tyre mamufacturer to supply the vehicle manufacturer with the full characteristice of his product.

There is the difficulty in interpreting these characteristice for vehicle performance work, aince tyre temperature, inflation pressure, torque level and road surface should be specified. It is not unnatural, therefore, that vehicie rolling resistance is usually represented by a constant term. Reference to Fig. B3. 2 shows that this is approximately true up to the speed at which the standing wave forms in the tyre tread.

Aerodynamic dras

The usual method of obtaining the eerodynamic drag coefficient of a vehicle is to subject either the vehicle itself or a model to a wind tunnel test. These tests pose certain difficulties which may be classified under four headings.

1) Correct representation of the ground
2) Blockage effects
3) Correct representation of the vehicle
4) Raynold's mumber effects

Points 3) and 4) may be avoided by using a fuil scale wind tunnel of the type existing at the Motor Industry Research Association, Lindley. Here quite large motor cars can be accomodated and there is the added advantage of a chassis dynamometer, capable of absorbing 250 horsepower, built into the rind tunnol (24). However, such fadilities are expenaive.

Blockage offects may be measured separately and so allowance may be made.

The correct representation of the ground however, is difficult to deal with. On the road, a vehicle moves relative to the adr and the ground. In a wind tunnel, the vehicle is stationary and so may have no velocity relative to the ground. The various methods employed to overcome this problem are given by white and Carr (24). Briefly, there are
a) Fixad platform to represent the ground. This is the most common method but it does mean a thick boundary layer underneath the car where ons would not exdst in practice.
b) Fixed platform with suction to remove the boundary layar.
c) Image mathod. The model is imaged about the ground plane thereby causing symmetrical air flow and correct representation of the ground. The main difficulties, apart from the cost of two models, are the size of tunnel required and the control of the dowmash.
d) Semi-1mage and platform.

Designed to alleviate the extra model required for c) however, a large tunnel is still required. The model is mounted on a platform. Below the platform at right angles to the platform and affixed to it a wall is positioned auch that the flow splits aymmetrically at the nose of the platform.
e) Endless belt. The model is arranged in the tunnel with its wheels touching an endless belt moving at the air speed in the working section. Such installations are expensive and are usually confined to small scale tunnels.

Deceleration test

This method has a lot to offer because it roquires no expensive wind tunrel installations or erecial rige and because it yields toth the aorodynamic drag coofficient and the rolling resistance.

The vehicle under test is driven up to a speed not far short of its maxdman speed and then sllowed to coast in neutral gear. The deceleration against apeed bistory of the vehicle is recorded during this coasting period efther by direct measurement of aeceleration or irom a plot of vehicle speed against time. The test track must be straight and preferably levol. If a small gradient existe, it must be known. Several such test tracks at
 meet these recuirements.

It is usual to favour the less direct method of measuring the vehicle speed against time characteristic, rather than attempt to measare vehicle deceleration directly. Onless the trask io virtually free of all bamps etc., the pitching and vertical motion of the vehicle makes the measurement of vebicle deceleration difficult (43). It is possible to measure the vehicle deceleration accurately using accelarometers positioned at the contre of gravity of the venicle, but such inatrumentation io expensive and time consuming to sot up.

Fig. D2.1 is a typical plot of the less direct mothod of a vehicle speed against time history of a deceleration test. This is used to illustrate the technique of the reduction of the resulte in order to obtain the drag coefficients. Hig. D2.1 refers to the Ronda 5800 and was extracted from "The Autocar ${ }^{1}$ (32).

Measure the slope of Pig. D2.1, calculate or otherwise obtain the vehicle deceleration at a maber of different vehicle spseds throughout the range. Then, knowing the mass of the vehicle and its rotating parts, obtain the drag force using Neuton's second law. Hence obtain a plot of vehicle drag against vehicle speed. This drag force is due to both the aerodynamic and the rolling resistance.

The particular appeal of this method for this vchicle performance work lies in its cheapness, simplicity and not least to the fact that "The Autocar" begen publishing the results of deceleration teste as part of their road test report on vehicles. This latter point beemed to offer a very cheap facility for obtaining the full drag characteriatics of a large mamber of vehicles. Such data would be invaluable in future vehicle performance work.

The main barrier seened to be the large amount of work involved in the reduction of the data. Accordingly, a apecial study was made of this point and a data reduction procedure designed.

SRCTOM D3

Decaleration teat data reduction

Experimental points plotted on a graph wust contain sore element of scatter. And data reduction method therefore, should include some amoothing process. The obvious method of approach is, starting from the accepted drag formila

$$
P d=W\left(A d+B d_{0} V\right)+K_{0} A_{0} V_{0}^{2} \quad D 3.1
$$

to work back and so obtain the mathematical expression

$$
\nabla=\nabla(t) \quad \text { D3.2 }
$$

which governs the resulte of the deceleration test. In fitting equation D3.2 to the experimental points, the three urknown drag coofficiente $A d, B d$ and K may be found.

The full deriviation of the function in equation D3.2, which includes the possibility of a wind speed, is given in Appendix D.1 and shows that equation D3.2 may take any ons of three forms.

Given that $\nabla=\nabla 0$ when $t=0$ and zero wind apeed, if
$\frac{W_{0} A Q}{K_{0} A}>\frac{\left(W_{0} B A\right)^{2}}{\left(2 \cdot H_{\cdot} A\right)^{2}}$
the function in equation D3. 2 is

$$
\rho=\alpha \quad V_{0}=V_{1}
$$

$$
\gamma=n \quad m=\infty \beta
$$

where

$$
\begin{aligned}
& 1=\left|\frac{H_{0} A G}{K_{0} A}-\frac{\left(H_{B} B\right)^{2}}{\left(4 .\left(L_{+} A\right)^{2}\right)}\right| \\
& \text { 늘 } \\
& \text { D3.4 } \\
& m=\frac{15, \mathrm{~K}_{0} \mathrm{~A}_{0}}{22, \mathrm{~m}_{\mathrm{B}}} \\
& \text { D3.5. }
\end{aligned}
$$

and $n=\frac{\text { H. Bd }}{2 . \text { KeA. }_{\text {. }}}$
If $\frac{W_{0} A d}{K_{0} A_{0}}=\left\{\frac{\left(W_{0} B d\right)^{2}}{\left(2 . K_{0} A\right)^{2}}\right.$, an unlikely event

If however, $\frac{\left(\mathrm{H}_{0} \mathrm{Bd}\right)^{2}}{\left(2 . \mathrm{K}_{\bullet} \mathrm{A}\right)^{2}}>\frac{\mathrm{H}_{0} \mathrm{Ad}}{\mathrm{K}_{\cdot} \mathrm{A}}$

It is evident, therefore, that certain difficulties exist with the obvious method of approach. The first is that the drag coefficients themselves are involved in the determination of which of the three expression g is applicable. This could be overcome
by trying to evaluate the drag coefficients using all three expressions and then by selecting the appropriate set. A "long-winded" procedure in itsel.

The second difficulty is in fitting experimental results to such complex expresaions by the method of "least squares" or ang other method. Equation D3.7 is lincar, and so may be accomodated quite easily, but its application is unlikely. Appendix D2 shows that equation D3.8 may be 11nsarised and so ravdered by mathomatical treatment. However, there is no simple solution to the treatment of equation.D3.3. It is not possible to linearise a tangent function. Fumerical methods would have to be employed.

Certain simpliflcations may be made by setting $\mathrm{Bd}=0$ and $A d=0.013$ for radial ply tyres and $A d=0.018$ for cross ply tyres (see Part B_{j} section 3). The only unknown then is the aerodynamic drag factor K. However, a great doal of the attraction of the deceleration method is lost because it is capable of giving the rolling resistance which, as is emphasized above, may not be expressed by a constent term only. Even with the s short-cut, the actual compatation time involved using a digital computer is likely to be greater than the time taken measuring slopes and doing the calculations by hand. Such a situation would be ridiculous.

It was decided, therefore, to drop the idea of fitting the correct lav to the experimental points in favour of a technique which uses a method of finding the slope at any point on the vehicle apeed against time graph and then procesding as one would with calculations by hand. Such a method is easy to program for reduction using a digital computer and is likely to be at least as accurate as hand calculations, paricicularly if the hand calculations involve measuring slopes of graphs. It is possible then to chack the accuracy of the drag coofficients by ovaluating the appropriate expression (equ. D3.3, D3.7 or D3.8) and comparing the answer uith the original plot of vehicle speed against time.

To find the slope of the vehicle apeed against time curve at axy of the points shown in Fig. D2.1, two methods were considered. The first takes the point under considoration and the two adjacent pointar see Fig. D3.1, and constructs a quadratic through the three points. The quadratic is then differentiated to obtain the slope and hence the docelaration.

Considering point (V_{n}, t_{n}) in Fig. D3.1 and the two adjacent points $\left(V_{n-1}, t_{n-1}\right)$ and $\left(V_{n+1}, t_{n+1}\right)$, a lino through the three points knst be satisilied by

$$
\left.\begin{array}{l}
\nabla_{n-1}=a+b_{0} t_{n-1}+c\left(t_{n-1}\right)^{2} \\
\nabla_{n}=a+b_{0} t_{n}+c\left(t_{n}\right)^{2} \\
\nabla_{n+1}=a+b_{0} t_{n+1}+c\left(t_{n+1}\right)^{2}
\end{array}\right\}
$$

Solving these three simultansous equations gives -
$b=\frac{t_{n-1 .}^{2}\left(\nabla_{n+1}-\nabla_{n}\right)+t_{n}^{2} \cdot\left(\nabla_{n-1}-\nabla_{n+1}\right)+t_{n+1}^{2} \cdot\left(\nabla_{n}-\nabla_{n-1}\right)}{t_{n-1 .}^{2}\left(t_{n+1}-t_{n}\right)+t_{n \cdot}^{2}\left(t_{n-1}-t_{n+1}\right)+t_{n+1}^{2} \cdot\left(t_{n}-t_{n-1}\right)}-$ D3.10
and
$0=\frac{t_{n-1} \cdot\left(\nabla_{n}-\nabla_{n+1}\right)+t_{n}\left(\nabla_{n+1}{ }^{*}-\nabla_{n-1}\right)+t_{n+1 \cdot}\left(\nabla_{n-1}-\nabla_{n}\right)}{t_{n-1 .}^{2}\left(t_{n+1}-t_{n}\right)+t_{n_{0}}^{2}\left(t_{n-1}-t_{n+1}\right)+t_{n+1 \cdot}^{2}\left(t_{n}-t_{n-1}\right)}-D 3.21$
hence the vehicle acceleration at speed ∇_{n} is

$$
P_{n}=\frac{22}{15}\left(b+2 \cdot c \cdot t_{n}\right) \mathrm{ft} / \mathrm{s}^{2}
$$

In order to teat this method, the slops at each point in Fig. D2.1 was moasured by drawing a tangent at evary point to a smooth curve drawn through the points. These figures are compared with those calculated above in Table D3.1. The discrepancy is quite small, largely because the data had been amoothed first by drawing the graph. Using raw test results, considerable orrors were produced by this method. Table D3.1 shows the calculated acceleration at 10.0 seconds to bo higher than that at 7.5 seconds, an impossible situation. This sort of deviation from the true increases vary rapidly with the degree of scatter on the results. The method could be made Fiable by very carefully anoothing out all results first, a tedious procedure which introduces the possibilities of errors in the data. Any point described with the wrong ordinate, an easy mistake when reading graphs and
punching cards, produces a very large error in the calculation of the slope at the point and at the two adjacent points. Accordingly, the method was discarded.

The second method employs a technique used elsewhere in this vehicie performance work, that of fitting a polymomial to the raw vahicle speed against time results. This means that any point recorded wrongly will have little effect on the overall result, a useful feature when handling test results. Also, a polynomal is easy to handie mathematically and can be ised to generate new points if necessary. It can be differentiated readily to give the vehicle deceleration at any apeed. By using the method of "least aquares" to fit the polynomial, the calculated vehicle acceleration at any vehicle speed is likely to be much more accurate than by measuring the slope of the graph, because the method of "least squares" puts the "best" line through the experimental points.

It is necessary, therefore, to fix the order of polynomial required to obtain reasonable accuracy. Table D3. 2 lists the result of a polynomial cirve fit to the data contained in Fig. D2.1. Program BO79, 11sted in Appendix B1, was used for this work. Polynomials of order mumber 4, 5 and 6 appear adequate. The accuracy is within the accuracy of the data used. Note the error recorded at time $t=10$ seconds. The quadratic interpolation
results in Table D3.1 suggest that this point is in error. Table D3.2 confirms thite.

The accuracy of a seventh order polynomial is appreciably better in this case, but there is a real danger in using a high order because it vould strive to accomodate scattered points. Since the purpose is to obtain the alope of the vahicle speed against time graph, this is not desirable. It was felt, therePore, that a aixth order polynomial should be adequate for the vast majority of test results. Howevor, it was decided also to reserve the provision of using a polynomial of a different order number if found to be degirable.

SBCTIOR D4

Deceleration test data handing

The procedure therefore, for reducing the data from a deceleration test is

1) fit a polynomial to V againat t results
2) hencs determine the velif cle deceleration versus speed characteristic.
using Hewton's 2nd law and the equivalent mass of the vehtcle, cbtain vehiole drag force $\mathrm{Fd}=\mathrm{Fd}(\mathrm{V})$.
3) obtain the drag coefficiente $A d$ and K assuming that there is no term proportional to velocity (i.e. $\mathrm{Bd}=0$), almo 5) assume $B d \neq 0$ and find $A d, B d$ and K.
4) check that accuracy of the results of both 4) and 5) above by feeding the drag coefficients obtained back into the appropriate $\nabla=\nabla(t)$ expression, that is either equation A.D.1.9, A.D.1.18 or A.D.1.22 in Appendix D.1. The recelculated volocities (V) may then be compared with the deceleration test resulta.

By adopting this procodure, the accuracy of the $V=V(t)$ polynomial curve eft may be checked, the test results may be checked againgt the two usual forms of the drag force expression and finally, an overall cheak on both the deceleration test itself and the reduction of its results by oubstituting back into the
expreasion governing the original data. The check on the deceleration test itself is a very useful feature alnce it throws light upon the standard of accuracy required in a deceleration test. The examplea given bolow illustrate this point.

The listing of the digital computer program designed to reduce the drag coefficiente of a vehicle from the results of a deceleration test is given in Appendix D3. The form of the output from this program is shown in Table D.4ol. After the heading data there follows the input data for reference purposes. This is followed by the results of the sixth order polynomial curve fit to the results of the deceleration test. The next set of figures is the fitting of a second ordar polynomisl to the drag force against speed figures in order to obtain $A d, B d$ and K (or, in the example shown, $1 d, B d$ and $A . K$). Then follows a set of figures fitting a firgt order polynomial to the drag force and the square of the rolative air speed data. The flnsl set of flgures headed "check on accuracy of results" gives the original read-in time and vehicle opeed figures in columns one and two. Coluwns three and four are the calculated speed figures (see appendix DI) whth Bd $\neq 0$ and $\mathrm{Bd}=0$ respectively. These latter columns should be compared with columns two in order to estimate the accuracy of the overall reduction of the
results and of the conduction of the deceleration test itself. The data used in Table D4.l is that depicted by the ∇ against t graph in Fig. D2.1, which was taken from "The Autocar" (31). The graph published by "The Autocar" is such that it is difficult to be, too precise about the value of each ordinate. Also published is the information that conditions on the day of the test were "blustery" with a wind speed of 15-20 mile/h. Such conditions are not conducive to good resulte from a deceleration test.
These points are borne out in Table D4.1. The fit of the sixth order polynomial is good but those of the two sets of drag figures show some error, particularly at the low vehicle speed of $20 \mathrm{mile} / \mathrm{h}$. Also, the rolling resistance coefficient of $\mathrm{Ad}=0.016119$ Is rather higher than one would expect from radial ply tyres.
Accordingly, it was decided to inveatigate the accuracy of the deceleration test and the reduction of its results further in Section D5.

SECTION D5

Accuracy of the deceleration test
It is shown in Section 4 that the reduction of the HONDA S800 deceleration test data published in "Autocar" (31) highhighted aome inaccuracies. Some of these inaccuracies undoubtedly arose when reading points off the amall, thick-lined graph given in "Autocar". It was decided, therefore, to obtain the actual test data from "Autocar". The Author is indebted to Mr. Ceoffrey P. Howard, Assistant Technical Editor of "Autocar" for the information contained in Table D.S.l. (37).

The figures in Table D. 5.1 show the results of two tests, one in each direction. The wind speed is quoted at 20 to 15 mile/h. at an angle of approximately 30° to the test track. Table D.5.1 does rot contain sufficient points in order to fit a sixth ordor polynomial. Accordingly, the information contained is plotted as Fig. D.5.1. This graph shows that the figures given as 44.4 and 47.8 in Table D. 5.1 mast be mismprints and should read 24.4 and 37.8 respectively.

A comparison betwean Pige. D. 5.1 and D. 2.1 reveals the published deceleration curve for the HONDA 5800 as a line approxmately mid-way between the two lines shown in Fig. D.5.1. This cannot be an accurste procedure, the wind speed is high and is not known precisely. Also a wind direction of 30° approxdately to the track must mean a considerable yaw drag component.

Taking the wind speed as 12.5 .mile/h. and $-12.5 \mathrm{mile} / \mathrm{h}$. at 30° to the head-on direction and submitting the data shown in Fig. D. 5.1 to program B032 reaulted in Tables D. 5.2 and D.5.3

These tables wher compared with Table D.4.1, show a little improvement in the accuracy of the reduction. Bat with only five or six points given on the deceleration curves and such a high wind apeed at such a high angle to the direction of the vehicle, no credance can be placed upon the drag coefficients given.

The instrumentation, designed within the Department of Transport Technology, Loughborough University of Technology, specifically for vehicle performance work tas not built during the writing of this thesis, nor was it considered likely to be in a reasonable state of development for this current progrem of work. Accordingly, an approach was made to The Motor Industry Research Association for the results of a deceleration test carried out with care and using reasonable instrumentation.

Now H.G.S. White of M.I.R.A. had completed a series of tests on a large mamber of vehicles. This series included both wind tunnel and deceleration tests and very good agreement was found batween the two. The data given in Table D. 5.4 relates to the M.I.R.A. deceleration teat on the SIMCA 1000 and the Author is indebted to Mr. White and M.I.R.A. for this information.

Table D. 5.4 quotes the vehicle speed at 2 second intervals for two runs. The results for the firgt run given are for a
high speed to a modium speed. The second. set given.relates . to the medium to slow speed range. Some phasing therofore is necessary to obtain a single graph. This phasing is best done. by plotting a graph, see FIg. D.5.2. The "join" is betueen 15 and 18 seconds.

Other information given by Mr. White includes the vehicle weieht, projected frontal area, embient conditions on the day of the test and the measured earodynamic drag coefficient of the SIMCA 1000 in the full scale wind tunnel of 0.408.

Uaing the M.I.R.A. data in conjunction with program B032 results in Table D.5.5. This gives $C_{D}=0.1052$, which agrees very closely with the wind tunnel result. I'he rolling resistance from the decelaration test of $\Delta d=0.0219$ seemed a little high for croes ply tyres until, checking back with M.I.R.A., it was learned that the deceleration test was conducted on the onemile straight which bas a alight gradient. The results given refer to the test in the uphbill direction, hence the rolling resistance figure quoted.includes this alight gradient. The rolling resistance coefficient obtained by M.I.R.A. was Ad $=0.02055$.

The colum of error figures for the sizth order polynomial curve.fit to the test data shows very little orror in the fit except perhaps at 15.2 and 77.2 seconds. That is at the "join" reforred to above. The indication here is tiat the "join" could be better. .

The norodynamic drag coefflcient given in Table D.5.5 for the condition when Bd\& 0 is not really relevant, since the Bd coefficient includes both asrodynamic and rolling resistance effects. The comparison with wind tunnal work must be made with the $\mathrm{Bd}=0$ results.

The "Check on Accuracy of Results" figures show the teat itself and the reduction of the results to be accurate and that the drag coefficiente may be quoted with confldence. Once gain however, the "Join" between the two gets of resulte is shown up. This feature of the program is important. ang errors in the initial handling of the data become apparent in the reduction uaing the progrem. Had this data been reduced by hand, the small error in the join of these two curves would not heve been noticed. Consequently, the resulting drag coefficiente could not have been quoted with the same confidence.

Table D. 5.5 would suggest that the dras expresaion involving three non-zero coofficients, that is $A d, B C$ and K, is more accurate than the drag expression using $A d$ and \mathbb{X} only. This means that the drag of a vehicle is not composed only of a constant rolling reaistance tern and an aerodynamic drag term proportional to V^{2}. The aituation is more complex. as vehicle performance calculations become more exact, account udil have to be taken of not only the ∇ term, but the $\nabla^{3}, \nabla^{4}, \nabla^{5}$ etc. terma also, since these terms undoubtedly exdet.

The deceleration test therefore, is capable of yielding the total drag of a vehicle and not just one particular cosfficient. The total drag that is, except for the component of the tyre rolling resistance due to the torque level transnitted through the wheels. This component way be supplied by the tyre manufacturer and added in separately.

SECTROK_D6.

Concluding remarks on the reasurement of dras

A small scalo wind tunnol can be useful in establishing the aerodynamic drag coefficient of a vahicio. The main difficulty is the correct simulation of vehicle abape, particularly the cooling system and the underside of the vehiole. An accurate model of a vehicle however may cost as mach as the acquisition of the production vehicle itself. Such a facility therefore, may be used to good advantage in prototype work.

The full scale wind tunnel at the Motor Industry Research Assoaiation will afford an accurate indication of the aerodynamic drag coefficient of a vehicle. then dealing with the vehicle itself, rather than a model, the brilit-in chassis dynamometer is an added attraction. The main disadvantages are the coat of hiring this facility and the small error due to the lack of a moving ground plano.

The tyre characteristics, and bence the rolling resistance of the vehicle, are avallable from the tyre mamacturers and may be expressed as a function of inflation pressure, tyre temporature, torque transmitted, etc.

If the above facilicies are not available, or if their cost is prohibitivo, the simple deceloration test is capable of affording the full drag characteristics of the vehicie. That 10 both the aerbdynamic drag and the rolling resistance of the tyres. In connection with the latter, it is not necessary to assume this
to be a constant tern, the deceleration test is capable of giving the full tyre resiatance, less that due to the torque level in the tyre. again, this torque level component can be supplied by the tyre mamfacturor and added on separately.

The main disadvantages in using the deceleration test are climatic conditions on the day of the teat, particularly wind speed, and the large amount of work involved in extracting the drag coofficionts from the test data. Both these points are answered to a very large extent by the uso of the disitel computer program B032. It is not necessary to handle the vehicle speed against time data at all from the daceleration test except to punch it onto cards. Program BO32 caters for a small uhnd speed on the day of the test provided that it is measured during the test and is at a small angle only to the direction of the vehicle.

This oxtends considerably the number of days during the year suitable for conducting a doceleration test.

The positive attractions in using B032 are that a choak is made automatically of the accuracy of tho reduction and of the test iteelf, and that two aets of drag coefficients are given dependent upon upon thether Bd is considered non-zero or zero.

The interaction of the tyre pressure and temperature on rolling resigtance is to a lerge extent, acconodated in the decelaration test. This is not the case with the roling resistance obtained Prom separate tyre rig tests.

The deceleration test, together wish the data reduction procedure developed in Part D, may be used to agseas vehicile speed instrumentation, since the resulting drag coefficients form the bagio of an asessmont of accuracy ard repeatability.

The iittle application of the techalque conducted to date suggeste that accuracy of the drag expression could be fuproved by the conaideration of other, higher order, terms in the polynomial.

SECTION_E1

Abstract

Introduction There are a mumber of approaches to the estimation of the fuel consumption of a proposed deaign of notor vehicle. The first, used by Fourquet (62), is to calculate the fuel consumption of a vehicle. during a full throttle acceleration run. There appears to be little merit in this exercise however, other than in the investigation of fuel consumption during vehicle acceleration. The results obtained have little meaning during normal vehicle usage since, if a driver selects full power from the ongine, he is saying that he requires a high vehicle acceleration and that fuel consumption is secondary. If he requires a low fuel consumption, the technique he must follow is to maintain a ateady, low, vehicie speed. In fairness to Fourquet, it should be stated that his paper (62) is devoted largely to the technique of using an anslogue computer in vehicle performance calculations. He does little with the results he obtains.

The second approsch is to describe a typical route or journey (79) (75) and to estimate the fuel consumed. From this the expected average fuel consumption in miles par gallon of the projected vehicle design may be obtained. It is understandable that this technique should be of interest to a vehicle mampacturer. His interest, during the development phase of a now vehicle, must centre on the fuel consumption which will be returned by the customer. Hence the typical teat route

and the basing of deaign calculations on this test route. Cornell (57) has pointed out however, that routes are changing, Road vehicles are spending more time on motorways (freewaya). This leads to longer trips, highar speeds and nearar steady state driving. It is difflcult therefore, to describe a teat route which represents falriy the journey behaviour of a typical driver. Further, as has been pointed out by Forster (48), the fuel consumption of a vehicle is affected greatly by the manner in which it is driven. Scheffier and Niepoth (56) have shown that the "warming-up" period in the operation of a vehicle hag a devastiting effect on fuel consumption.

The third, and more fundamental, approach should be adopted. That of eatimating the fuel consumption of a vehicle when running at a steady spsed. This then enables a more fundamental study to be made of the effects of engine type and aise, gearing, drag etc. The offects of transients, such as an acceleration to overtake another vehicle, the warming up period etc., may be added onto the resulte of a steady-state study later. Always assuming that the effects of these transients are known accurately.

So many factors can affect the fuel consumed during a transient. Factors such as carburetter design on a petrol engine, design of manifold, temperature of manifold etc. The current interest in exhaust pollution has highlighted this point and efforts have been made to reduce the fuel consumed during an acceleration by better carburation.

A steady-state match study therefore between the engine and the vehicle should be the ain. This may be verified by accurately conducted steady state road tests on the vehicle. Further, a full parametric study is possible for the Designer to enable him to obtain the best design possible. Lastly, steady-state knowledge of fuel consumption sets a convenient norm which can be used to assess the many and varied transient conditions.

A mamber of techniques are available for the measurement of fuel consumption during a road test. For strictily steady-state measurements, the "petrometa" mampactured by M.G.A. Industries Ltd. is suitable. This is a displacement type of instrument mounted in the fuel line which gives an electrical signal every time a measured quantity (say $1 / 250$ pint) of fuel is passed. This signal is used to operate a counter in the vehicle. There are more sophisticated versions of this technique aimed at coping with the fuel consumed during acceleration runs. Such devices rely on a very small measured quantity of fuel per electrical signal in order to reduce the orror of measurement. The reader is referred to a Russian paper (5l) the Fiat system (96) and a S.A.E. paper by Sturm (76). The intermiftent operation of the lift pump on both a petrol and a compression ignition engine makes the measurement of the tirue instantaneous flow rate of fuel difficult.

Part E of this thesis therefore deacribes how a match study should be conducted, the effecta of a poor match, a fundamental study
of the different engine types particularly petrod and compression ignition (66) the effect of engine size and finally, the result of a parametric study.

SEGTION E 2

Match between ongtine and yehicle

The usual way of studying the match between two connected componente is to combine the characteristics of both into one graph. A match atudy between an engine and a vehicle is no exception. The characteristics of the vehicle are made up from the drag data and the gear ratios. The engine characteristics must give data on output in conjunction with officiency date throughout the eng1ne apeed range from low load to full load.

There are two parameters in use to asaess engine efficiency. These are the brake thermal efficiency and the brake specific fuel consumption (rigourous definitions are given by the Author elsewhere (1)). Of the two, the brake specific fuel consumption, or s.f.c., is preferable since it relates the fuel consumed and the power output directly without involving the calorific value of the fuel or other constants. The nost fundamental output parameter of an engine is its torque or brake mean effective pressure. Power output is secondary since it is the product of torque and engine speed. However, the use of engine power as the output parameter is preferred to the use of torque or brake mean effective pressure since, on matching an engine to a vehicle, the power throughout the transmission system atays substantially constant, factored only by the transmission efficiency. The torque however is affected by gear ratios. Also, the thermal efficiency, whether expressed as brake thermal efficiency or brake
specific fual consumption, is expressed in terms of the engine power output.

The engine characteristics, compriaing power, apead, efficicncy data throughout the load range may be arranged in a mumber of ways. A plot of asf.c. against power for different ongine apoeds has been used (65) (e9). F2g. B2.1 shows such a plot for the Cumins ITH-250 compression ignition engine taken from Joyner (65). This plot favours a close, fundamontal, study of the ongine oniy aince it is made up Prom, and related closely to, the engine consumption loops (see Section EL and Ref. (1)). Hence the influence of the intake gystem may be seen with clarity. A better forn of expressing the enfine charccteristice for matching purposes is shown in Fig. E2.2. This is a plot of engine brake horsepower, corrected for anbient conditions, against engine speed for different load settings. Superimposed onto this plot are lines of constant brake specific fual consuaption.

The abscissa is the usual ongine porformance independent variable, speed, and the ordinate axds the power output. Those two quantities are rolated directly to the power absorbed varsus vehicle speed charactoristic of tho vehicle.

Fig. E2.2 io composed by combining two soparate ongine characteristics. Tho flyst is a plot of the power versus speed lines for constant throttle opening and tho second consists of a plot of s.f.c. and engine spoed for the same constant throttle angles. Those plots are shown as Fige. E. 2.3 and E2. 4 respectively. The procedure for combining these two plots is to draw a horizontal line on Fig. E.2.4
representing a constant s.f.c. of, say $0.80 \mathrm{lb} /($ bhp h). Read off the corresponding engine speeds and throttle angles and to cross plot these data onto Fig. B2.3. . Repeat for other lines of constant s.f.c. and so form Fig. E2.2.

It should be mentioned here that the use of throttle angle is not the best parameter to represent load. It is shown below that, for a patrol engine, inlet manifold depression is to be prefered. The point is of iittle importante in discussing the technique of conducting a match, particularly aince lines of constant inlet manifold depression are best obtained by holding the throttle angle constant and measuring the depression and then crosemplotting the results to obtain the lines of constant manifold depresaion. The technique of expressing the match is not altered in character by omiting this otep.

The vehicle is described by a plot of the power required at the road wheels to propel the vehicle at constant speed against vehicle speed. The power required is obtained from

where V represents vehicle apeed mile/h.
The vehicle drag force being described in Section 83 of this thesis.

Table [32.1 shows how the vehicle characteristic is factored by the transmission efficiency (see Ssction B4) and the overall gear ratio to relate to conditions at the engine flywheel. Hence Fig. E2. 5 may be formed, being a combination of the full engine characteristics, both power and thermal efficiency, and the vehicle characteristics. Fig. E2.5 therefore describes fully the steady state operation of the engine and vehicle combination.

A study of Fig. B2.5 showa immediately the degree of undergearing, as defined in Section B1O. If the load lins crosses the full throttle engine power curve at the maxdmum brake horsepower speed of the engine the degree of undergearing is said to be unity.

The vertical distance between points A and B on Fig. E2. 5 represents the power available for acceleration. This shows that undergearing increases considerably the power available for acceleration for a particular gear number.

The load line in relation to the lines of constant s.f.c. lines shows the efficiency of the combination. Fig. E2. 5 represents a match study of vehicle A (the 7 cwt. van) and the load line corresponds to a vehicle weight of 2128 Lbf running on a level road with zero wind speed.

Table E2. 2 traces out the intermediate calculations from Fig. 152.5 in order to obtain the steady state fuel consumption (mile/galion) against vehicle speed shown in Fig. E2.6. The internediate calculations
require the speoific gravity (or density) of the fuel during the engine test. The fuel was petrol of specific gravity 0.740. It is perhaps worth mentioning here that had the s.f.c. been expressed as volume flow rate per b.h.p., instead of mass flow rate per b.h.p. it would not be necessary to use the specific gravity figure.

Pig. E2. 6 suggests that there is a masdman economy operating point at a lou vehicle speed when running in top gear. The trend of the curve (the full line in F1g. E2,6) shows the fuel consumption to increase markedly with vehicle speed.

Superimposed onto Fig. Bi2.6 (the dotted line) is the measured fuel consumption of vehicle A as reported by "The Autocar" (11) when testing the Estate veraion of Vehicle A of the same weight of 2128 1bf. As mentioned previously, these vehicles are of 1dentical specification except for the shape of the rear end.

The difference highlights the main weakness in a match study. In order to defind the shape of a constant specific fuel consumption line with reasonable accuracy, a large mamber of engine test readings must be taken. Also, in crose ploting tho s.f.c. figures, some extrapolation is necessary. Such errors however, are usually small scale and the resulting scatter may be froned out when plotting the fuel consumption curve Fig. Eiz.6. Not all the difference between the measured and calculated curves in Fig. 52.6 may be attributed to errors in the constant specific fuel consumption contours.

The date for P1ge. B2.2, E2.3 and s2.4 vare obtalned by the Author fros an 1dentical engice to the engine in Vehicle A: The engine was in full vchicle tria with the exception of the exchanst sygtem and a very large muber of readinge were taken. The results were reduced uaing a digital compater program in order to eliminate arithmatical errors and were corrected for ambient conditions to 29.53" hig pressure and $60^{\circ} \mathrm{F}$ temperature.

In Fiew of the errors possible in defining the specific fuel consumption contours, it was decided that the match study should always be comacted by "hand". In principle, it should be possible to devise a computer progran to accept the raw engine test reaults and to produce the full engine characteristics. Such a program would have to conduct a large muber of curve fits and nay be throw very mach off course by a single false reading or a miempunched data card. It was folt that processing by hand would be anch more acourate.

Section E5 shows the offect on fual consumption of changing to another gear mumber. If however, an infinftely variable ratio transmission were available and viable, say of the hydrostatic type, such that engine speed is completely independent of vehicle speed, then one would ulsh to control the engine to run on "the optimam control line" shown "dashed" in Fig. E2.5. This gives the mindman fuel consumption for and particular power demand of the vehicle. Should one wish a high acceleration, the control could be arranged to run the engine at its maximum brake horsepowar speed so affording the greatest posaible
powar available for accelaration. Many guch infinitely variablo transmisaion designs have been investigated or are undar developnent (39), (40), (61), (82), (87), (88), (91), (92). Most suffer from a poor mechanical efficiency, mise and high imitial cost. Nevertheless P1g. E2. 5 shows the incentive for the development of a suitable design.

The expected gain in flel economy, assuming a transmission efficiency for the ideal transmission to be identical to that of the mamal gearbox outlined in Section B4, is shown by the "dashed" 1ins in Fig. E2.6. The intermediate caloulations are given in Table E2.2. Flg. E2.6 shows a sigmiflcant gain in fuel economy at low speed. Thes gain diminishos as vehicle apeed is increased since tho power required approaches the maximum power of the engine.

It is mentioned earlier in this aection that the engine characteriatics of a matoh study ahould be expressed as lines of congtant inlet manifold depression for a petrol engine, rather than as Iines of constant throttle angle as in Fig. E2.5. There are two main reasons for this. Tho first is that a practical infinitely variable transmission control would almost certainly omploy inlet manifold depression for a speed-load parameter. The second reason is that the "charge-weight" law (1) suggests a 1 inear relationship between air mass flow rate into the engine and inlet manifold pressure. Hence the power output of an engine should have a linear relationship with inlet manifold pressure (1). Thia simplifies tho design of the control system considerably.

Fig. E2.5 mphasizes that, if a uide engine opeed range is required during operation, as exdsts in vehicles, a full match study between enfine and vehicle is desirable in order to study the effeciency of the engin - vehicle conbination. It ia meamigiess to quote cuch engine performance flgures as naxdmum brake horsepower and minimum specific fuel consumption. The performance of the combination is the criterion and oniy a match atudy can predict this.

SECTION E3

Conversion of Torque - speed to Power - gioed Engl ne Characteristics
The engine reports issued by The Motor Industry Research Association are an abundant source of engine charactariatic data. M.I.R.A. teat and report upon a large number of ongines of foraigh mamufacturef. The ongine types are not restricted to petrol and compression ignition. Special engines, such as the N.S.U. Hankel rotary engine, are tested. These engine reports are very detailed in that they contain information on the materials used for the engine components, assembly data, peculiarities and epecial features. Also included in each report is a graph giving the full, measured engine characteristica.

Unfortunately, these characteristics are presented as a graph of the more fundamental output parameter, torque against engine speed, with lines of constant esf.c. rather than engine power as adrocated in Section E 2 and ahown in F1g. E2.2. The teat reports on compression ignition engines use brake mean effective pressure as the ordinate. This is directly proportional to torque output and of more interest to compression ignition engine workers.

Fig. E3.1 depicta a typical M.I.R.A. engine characteristic for the Peugeot 404 of engine torque plotted against engine apeed with lines of constant speciflc fuel congumption. Also shown are lines of constant throttie angles. It is by no means apparent just where
the"optimum control line" lias. Fig. E3.2 shows the same characteristics with lines of constant power suparimposed and the optimum control line sketched through the pointe of minimum s.f.c. on each constant power $11 n$.

In order to sketch the optimum control line onto the M.I.R.A. graphs to facilitate abalyeis, two approaches are posaible.

1) Sketch lines of constant pressure directly onto the M.I.R.A. graphs as shown in Fig. E3. 2
2) Replot the M.I.R.A. graph with corrected ongine power as ordinate.

Of the two, the second approach is likely to be of more use in an engine-vehicle match study, but is ifirely also to involve more labour.

Both aproaches havo been studied. Approsch 1) can be made very easy by the mamfacturer of the drawing aid shown in Fig. E3.3. This has been designed to help in the aketching of a hyperbola and so afford lines of constant power using the expression
Torque $=\frac{\text { Power }}{\text { rotational speed }}$

The instrument has not been marapactured since attention was focussed on the second approach. It is folt that it should be possible to improve this design considerably in order to provide a captive
pencil which sketches out the curve on moving another suitable control, rather than having to move the control through discrete distances before anrking the graph with a pencil point. a 3hort anaiysis of the dosign of this instrument is given in Appendix El.

In order to reduce the considerable amount of labour involved in converting a plot of torque (or b.m.e.p). against speed to power against speed, it was decided to use the graph plotter facility of the Loughborough I.C.L. 2905 digital computer. Program B184, ilsted in Appondix E2, was prepared to this ond. This program is fed first with a mumber of torque (or b.m.e.p.) and speed points along the full throttle (or rack) $12 n$ and then with torquemspeed points around the constant s.f.0. lines. The program converte the torque (or b.m.e.p.) figures to power figures and remplots each curve. Bach curve produced by the graph plotter is mambered consecutively and so may be identified by the line printer print-out. Δn example of a portion of this print-out is given in Table E3.1 for the Peageot 404. This gives the power-speed figures used by the graph plotter and the specific fuel consumption figure for the curve or the information that the curve is the full throttle line (curve 1). Appendix E3 contains a muber of converted ongine characterictics.

SECTION E4

Type of Engine

1) Petrol and compresgion ignition

A atudy of the characteriatics given in Appendix E3 reveals a fundamental difference between the curves of a petrol engine compared with those of a compression ignition engine. The optimun control line of the petrol engine lies very much closer to the full throttle line and the s.f.c. contours present a steeper face on both sides of the optimus control line.

This reflecta the besic difference between the two engine types, as explained elsewhare by the Author (1). The petrol engine, in its present form, must be throttled in order to control the load. Fig. E4.l shows the typical consumption loop of a petrol engino in which the engine is run at a constant speed and the mixture strongth varied from very rich (point A) to vary weak (point B). At point B the mixture strength is such that the mardmum power or torque output is obtained, whereas at D the minimum fuel consumption is returned. Point C in between represents stoichiometric coniitions. at point \mathbb{B} the mixture strength is so weak, and the flame speed so low that a flame is in evidence throughout the power atroke and the ensusing: exhaust stroke. On opening the inlet valve for the irduction stroke, the nev charge is lit by the flame and the characteriatic "apitting back ${ }^{\prime \prime}$ into the carburetter is experienced.

It should be noted bowever, that the power returned at point If is still some 85% of the madrun possible. Hence it is impossible to control the conventional petrol engine by mixture quality as with the compression ignition engine. As the fuel intake is reduced to cater for a low load, the air flow rate must be reduced also to naintain a near stoichiometrio, and hence a near constant fuel/air ratio. The air intake therefore, must be throttled.

It has been shown by the Author (1) that throttling the intake to an engine results in a high loss to the coolant at low load. The temperature of the charge around the engine cycle remains of substantlally the same form and magnitude, irrespective of load. This is a result of the near stoichiometric fuel/air ratio. Hence the heat flow rate to coolant is substantially constant and, at low load, represents a high proportion of the energy intake to the engine. The sef.c. of the petrol engine, therefore, rises rapidiy as load is removed.

Fig. E4. 2 shows a series of consumption loopg throughout the load range of a petrol engine, all at the same constant apeed. A carburettor is usually designed to follow as closely as possible the minima in the curves in order to produce the lowest part load e.f.c. and to richen at full throttie in ordar to give the maxdmum torque output. The "dashed" line of Fig. Elu.2.

The poor part load officiency can be reflected in the petrol engine characteristice shown in Fig. E2. 2 by the s.f.C. vilues along a vertical line representing a constant engine speed. Starticas from the full throttle line, the s.f.c. values rapidly pass through a minimum (optimu control line) and then rise as tho load is removed. This is the condition shown by the "dashed" line in Fig. E4o2.

The air intake of a compression ignition engine is not throttled (in general) and the load of the engine is controlled by fuel/air ratio. At light load, therefore, the mixture strength is wak and the cycle temperature pattern shows lower temperatures. The energy loss to coolant therefore, is considerably lesa than that for the petrol engine at light loads. The dotted line in Fig. E4. 2 shows the measured consumption loop of a compression ignition engine. For the purposes of comparison, both the petrol and the compression ignition engine were run at their respective maximum terque speeds.

The consumption loop of the compression ignition engine is appreciably lower at full load, reflecting the higher compreasion ratio of the compression ignition ongine (16:1, as opposed to the very low value of $407: 1$ for the petrol engine). However, the efficiency of the compression ignition engine stays high as load is removed.

Again, this can be seen in any of the compression ignition engime characteristica in Appendix B 3 by drauing in a vertical lino representing a constant ongine speed. The s.f.c. values change
little along the line and the minfmia (optimm control line) is some way from the full rack line.

The optiman control line of the compression ignition engine therefore, is much nearer the load line than is the case with the petrol engino. Also, the part load thermal efficiency of the compresaion ignition engine is appredably higher. Vehicles gencrally spend the anjority of thair working lives running at part load. Hence the extablishnent of the compression igaition engine in the comarcial vehicle field. The use of this engine would be very much wider if othor problems, such ae noise, smell, woight, inftial cost could be overcome (66).
an obvious conclusion to drav from this stucty is that encouragement should be given to research and developient of the "stratipfied charge ${ }^{10}$ engine. This is a petrol engine in which the load is controlled by mixture quality, as in the compreasion ignition engine. The charge in the combustion chamber is arranged to be heterogeneous, baing rich in fuel in that part of the chanber where combustion is inftiated and weak alsowhere. This concluaion rast be ondorsed also from considerations of exhaust pollution. x otrailisflet charge ongine is of considerable bonefit in reducing the noxdous components in an engine exhmet (99).

Another fruitful line of study mast be into the control of Lydrostatic transmissions (91), (92) and their development.

2) The Eotary Bngine

The rotary engine is epitomized by the N.S.U. Wankel engine. The characteristics of the N.S.U. KKM 502 engine, as fitted in the H.S.O. "Spider" sports car, are shown as Fig. A.E.3.4 in Appendix E3. Superimposed onto Flg. A.E.3.4 is the normal load lino of the Spider taken from Fig. 7 of a paper by Dr. ING. W Frode (100). Fig. A.E. 3.4 shows the Spider to be of neutral gearing (degree of undergearing $=1$).

The overall top gear ratio of the Spider is 26.0 mile/h per $1000 \mathrm{rev} / \mathrm{min}$ engine speed (103) siving a madman vehicle speed calculated from Fig. A.E. 3.4 of 92.7 mile/h. This agrees well with the $92 \mathrm{mile} / \mathrm{h}$. measured by Autocar (103).

Fig. EL. 3 shows the fuel consumption of the Spider, as measured by Autocar (103), in conjunction with the calculated fuel consumption using Flg. A.E.3.4. The specific gravity of the petrol was assumed to be 0.740. Again, the agreement is very good, ongendering confldence in the match plot.

The fuel consumption of the Spider is not good for a small eports car. Fig. A.E. 3.4 shows the characteristics of the N.S.U. Wankel engine to be very similar to those of a petrol engine. This is to be expected, since the intake of the rotary engine is throttled, just as on a conventional petrol engine. If anything, the optimum control line of the KKM 502 is even nearer the full throttle power line than most petrol engines. Also, the general level of the specific
fuel consumption figures is slightiy higher. In conclusion, therefore, it may be said that the ongine characteristics of the N.S.U. Wankel are those of a alightly inferior petrol engine.

3) The Gas Turbine

Some difficulty was experienced in obted ming the characteristics of a gas turbine engine until aThe AutomobileEngineern (101) pablished an article on the Leyland $2 \mathrm{~S} / 350 / \mathrm{R}$. Fig. B4. 4 is a copy of a graph from this article. It is possible to obtain the engene characteristics in the required form (see F1g. E2.2) by noting speed and b.h.p. data along a particular fuel flou rate line on Plg. E4.40 The opeciflc fuel consumption figures may be obtained from these data. Table E4. 1 outlines the arithmatic and the steps taken. Then, plotting the s.f.c. figures against engine speed for constant fuel flow rates; as shown in Fig. 154.5, facilitates the crosemplotting to obtain the required form, Fig. E4.6. Shown also on Fig. E4.6 is the load line for a typical 38 ton truck (not the Leyland truck, aince the drag figures were not available at the time of writing).

The most striking feature of Fig. E4.6 is the close proximity between the load line and the optimum control line. The two lines are colncident for all but the vary low output ahaft speed range. This emphasizes the folly in assessing an engine for a particular duty by means other than a full match stucuy. A cursory study of the thermal efficiency along the "full throttle" line would show that between full speed and half engine speed the s.f.C. is less than $0.500 \mathrm{Ib} /($ bhp h$)$ and that below half engine speed, the thermal efflciency drops rapidly. However, a full match study shows that,
for level road ruaning, the efficiency of the match is quite good oven down to a vary low output shaft speed. A characteristic and redecming feature of the gas turbine engine is therefore, the position of the optimum control 11ne.

The optimum control line of a free power turbine machine must take a path through the maxima of the power curves. Ideally, such an engine is a "constant power" machine. For a constant gas genarator shaft apeed, the air mass flow rate through the engine is substantially constant. It follous therefore, that the power input to the free power turbing is constant under such conditions, irrespective of power turbine speed. The outpat torque therefore, should ideally, approach infinity as the speed of the free power turbine is reduced.

A turbine with fixed geometry bleding is capable of operating efficientig over a narrow speed range only. The optimum speed is designed to be about 80% of the maxdmun apeed possible of the turbine in order to obtain as wide a opeed range as possible at high efficiency. At low speed, therefore, (less than $\frac{1}{2}$ maximum speed) the officiency falls off rapidly to sero at turbine stall.

The power output curve therefore, instead of returning constant power output, follows the shape of the efficiency curve. The masdmum in a power curve, therefore, coincides with the maximm in the appropriate efficiency curve.

Fig. E4. 4 ohows lines of constant fuel consumption, rather than lines of constant gas generator speed. The original figure fn
> "Automobile Enginear" hovever nakes it clear that the fuel flow rate and the speed of the gan generator are geared together aince the fuel flow rate has a "scheduling control". A fual flow rate of 139 1b/h represents 100% compressor speed, $117 \mathrm{lb} / \mathrm{h}$ represents 958. Sindiarly, the other fual flow rates shown in Figs. B4.4, E4. 5 and E406 represent 90\%, 80\%, 70\%, 50% and idle compressor opeeds respectively.

The torque output of the free power turbine machine therefore, rises to 2 or 3 times its full speed torque at stall apeed when running at the maxdmum allowable gas generator spoed. A desirable feature in the power unit of a vehicle.

The extent to which the position of the power curve maxdea move towarde the lower output apeed range as the gas generator speed Is reduced is related olosely to a separate match study of the components comprising the engine. By paying careful attention to the charaoteriatics of the engine components and the way they are matched together, it is posaibie to make the land line and the optimum control line coincide. This means therefore, that the engine designer should have the drag coefficienta and full details of the vehicle when he designs the engine. Such a component match study must be conducted angway in order to ensure that the compressor will not run into surge during operation. This cannot be left to chance, since the surge line on the compressor characteriatice lies close to the locus of
maximum isentropic efficiency of the compressor. Hence, for a good match, the match line, or the "equilibrium running $14 n e^{\text {g must }}$ be quite close to the surge line. Appendix F_{4} outlines the procedure for the compoyent match in conjunction with the load characteristics.

In conclusion, therefore, while bench tests show the gas turbine to be inefficient at low output shaft spoeds, a full match study between engine and load shows that the true situation is rather better. Further, there is the possibility of altering the blade angles etc. of the engine componente in order to obtain the best overall match posaible. This point is worth pursuing further to consider the offect of variable turbine inlet guide vane geometry on the ovarall match, particularly when it is remembered that the output torque curve of the free power turbine machine is excellent for automotive purposes.

It would appear from this short analyais that the gas turbino has a future in the automotive field, particularly if a amall design complication can improve the thermal efficiency. The fact that a gas turbine is a "milti-fuel" engine and so can run on a very wide range of fuels, together with the excellent torque curve, mast onsure its introduction into heavy commercial and, perhaps, military vehicies.

4) Inorease in ongine power putput

An existing engine may be modified in order to increase the maximun powar output by supercharging, turbocharging, tuning of inlet and/or exhaust syotems or by decressing the inlet pressure drop by fitting two carburetters in place of one. It is of intorest therefore, to study the effect of such modifications upon the match between the engine and the vehicle.

Fig. E4. 7 shows the characteristics of the engine fitted to vehicle A, the standard aingle Solex carburetter however being raplaced by twin s.u. carburettors. This engino test was conducted by the Autbor in his Engine Laboratory using the same engine from which Fig. E2. 2 was produced. A comparison between Fig. E4. 7 and the corresponding single Solex plot, Fig. E2.5, shows an increase in the maximum ongine efficienoy. Presumably, this is a result of the better mixing and distribution of the twin su. system. Also, tho maxdmum corrocted power output of the engine bas risen from 34 bhp to 39 bhp as a result of the lower pressure drop acrose the inlet system. The general shape of the two sets of characteristice howevor, is very similar.

Superimposed onto PlE. EL. 7 is the same load line shown in Fig. ER.5, that of vehicle A in normal trin. No alteration has been made to the overall top gear ratio. A comparizon of the two match
studies shows that the Vehicle a has near unity degree of undergearing with the twin sou. carburetter engine, whereas it is some what overgeared with the standard engine. This is a direct result of the pover increase.

A significant difference is shown in Fig. E4.8, a comparison of the steady-state fuel consumption of Vehicle a with the engine in atandard trim and with the twin s.u. carburetters fitted. It can be asen that Vehicie A is better matched to the twin sou. carburetter version of its engine than the standard single Solex carburetter varaion. The two curves in Fig. Eh. 8 are both of calculsted fuel consumptions, using the two match studies. It is of interest to note however, that the "optiman control line" fuel consumption is practically identical for both forms of the engine. The two curves in FIg. E4. 8 emphasize the desirability of conducting a match studs between the engine and the vehicle.

Anothar way to increase the power output of an engine is by turbomeharging. It is expected that legialation will be introduced soon to increase the maxdmam allowable gross vehtcle weight of a commercial vehicle from 32 tons to 38 or 45 tons. This legisiation may vell be accompanied by a law governing the mindmum allowable power/weight of a heavs commercial vehicle. This means that more powerful ongines will be necessary. It is possible to achieve this additional power by turbo-charging an existing large engine.

Figs. B4.9 and B4. 10 are the engine characteristica of a large automotive compression igmition engine, normally aspirated and turbo-charged respectively. The material for these figures was supplied by A. Rowbotton (104). A comparison shows at a glance that turboncharging increases the maxdmum power output substantially; from 183 to 230 bhp. A more detailed comparison is made difficult however, because the power output has inoreased. It is not possibla to draw conclusions without taking some account of the distortion of the power scale due to the turbo-charging.

This problem is general in engine assessment work. Giles (61) advocates a "centre of operation" criterion for the assessment of the runaing time of a particular transmission. This centre of operation is the intersection of a horizontal line on the ongine characteriatic plot representing, say, 50% maximum engine power and the load inne. This idea could be extended to form an assessment of the fuel economy of the engine and vehicle.

Macmillan (92) rotes that the torque againgt opeed curves of an ongine with constant throttle angle are approximately linear. This he uses as a basie for the non-dimensional representation of engine power. His aim was to produce a relatively simple expression representing the engino in order that he alight analyse a range of euromaitc transmission systens. This too could be extended to form a non-dimensional engine characteristic plot for the purpose of comparison.

Sites (105) has developed a rather ingenious index in order to assess the overall fuel consumption of an engine. He notes that a plot of the area anolosed by a specific fuel consumption contour is approximately linear with the specific fuel consumption. The slope of this plot ($\tan \phi$) and the intercept (b_{0}) on the x-ards (i.e. the minima possible s.f.c.) are used to form the index

$$
\tau=b_{0} \sqrt{\frac{R_{\text {max. }} \mathrm{B}_{\mathrm{p}}}{\tan \phi}}
$$

where $P_{\text {max }}$ is the maximum power of the engine and H_{p} the engine speed at which it occurs.

This gives a number which is said to be a measure of tho overall efficiency of the engine. It assumes equal probability of operation within a particular s.f.c. contour and hence takes no account of the load requirements or of the shape and position of the s.f.c. contours.

It has bon emphasised in this Section, and shown in the analysis of the gas turbine particularly, that account mast be taken of the Load. Rowbottom compared Figs. B/w9 and EL. 10 simply by looking at the curves and concluded that the optima control line of the turbo w charged engine was nearer the maximum power line and, as a consequence, the additional power had been obtained at the expense of fuel economy. It is not practicable to compare the steady state fuel economy of the engines powering a particular vehicle directly, since the engines serve different sises of vehicle.

Rowbottom's conclusion is by no means obvious fron a casual stuay of Figs. E4.9 and E4. 10.

The technique employed by Prof. Nacmillan is attractive in tizat it could culimate in a plot of non-dimensional power versus non-dimensional engino speed. Comparison of the charactaristics of different engines could be effected by laging one plot on top of the other and drawing conclusions from the slope and position of the specific fuel consumption contours.

To ootain a mamericil assessment of a match, a atandard, nondimensional, vehicle is required. The "centre of operation" technique of Giles could be used as a rough and ready guide, but it is suggested that a bettier approach is to standardise on a ainple rolationship between vehicie weight and vehicle projected frontal area, A survey would suggest a typical ralationship. Lat this be

$$
\Delta=\Delta(w) \quad \sim E 4.2
$$

It is possible to put a numerical value on a typical drag cooificient C_{d} and rolling resistance coofticient A_{d}. The expression for the required power becomes

assuming that $\mathrm{B}_{\mathrm{d}}=0$.

By apecifying a typical power/wedght ratio for the clasa of vehicle it in possibie to calculate the maxdmun speed of the typical vehicle ueing the maximum brake horsepower of the engine in equation 54.3. The transmission effiaionay may be assumed to be 0.90. From knowledge of the maximum vehicle apeed and the engine speed at maximum brake horsepower, the overall gear ratio is caiculable by apecifying unity degree of undergearing, Hence, the load line of a typical vehicle can be superimposed onto the engine charactaristics.

The two versions of the compression ignition engine in Pige. E4.9 and E4. 10 are intended for use in large commercial vehicles. It is suggested, tinerefore, that the cab aize of such vehicles is aubstantially constant. Therefore, the projected frontal area (A) of a typdcal vehicle $\mathfrak{y} 0$ these engine characteristics may be fixed. A figure of $A=60 \mathrm{ft}^{2}$ is suggested. Taking a power/weight ratio of 8 horsepower per tong $A_{d}=0.01$ and $C_{D}=0.72$ enables the typical load lines to be put on Fige, B4.9 and B4.10.

A study of the engine specific fuel consumption figures along these typical load lines forms the basis for a muerical comparison. A tentative study of these two typlcal load lines suggeste a slight inorease in engine efficienoy of the turbomcharget vereion at high engine speed and a slight decrease at low engine apeed.

The comparizon tschnique is not perfect, since it depends upon ill-defined "typical" papaneters. It is felt intuitatively that a sinple relationship exists between vehicle weight and projected frontal area, perkaps of the form

$$
A=k u+0 \quad=\quad H_{604}
$$

However, this relationship may be valid for a class of vehicles only and parhaps the vahicles of one mamufacturer only within that class.

Nevertheless, a basis of comparizon now exiata whers there was none before. This basis tokos account of the load requirements, an essential requirement in the assessment and comparison of aimilar engines. Also, the basto of comparison proposed is capable of development. It could, for instance, be combined with a non-dimensional technique simflar to that proposed by Prof. Macmillan (92).

SECTION E5

Parametric Study

1) Effect of vehiclo voisht

Vehicle A is consldseed first, being representative of a nmall car powered by a petrol engine. It was decided to use the twin sou. carburetter version of its engine for purposes of comparison, since this results in near unity degree of undergearing with the standard load line and standard overall top gear ratio. A 20% increase in vehiclo weight above the standard test figure of 2128 lbf represente two additional passengers plus some luggage. The sort of addition encountered during the holiday period. Also, 20% increase represents the sort of weight penalty a manufacturer could incur if he were careless in the design of his vehicle.

These two examples represent two separate conditions in the investigation of the effect of a 20% increase in vehicle weight. The first auggests that the weight is added to the vehicle with no change in overall top gear ratio. Consequently, the vehicle becomes overgeared. The second implies a different overall top gear ratio in order to maintain unity degree of undergearing.

Vehicle A in standard trim, having an engine with the characteristics depicted in Fig. E4.7, has a maxdmum speed of

$$
5000(\mathrm{rev} / \mathrm{min}) \times 0.0152(\mathrm{mile} / \mathrm{h} \text { per rev/min) }=76.0 \mathrm{mile} / \mathrm{h}
$$

Increasing the vehicle weight by 20% to 2552 lbf and assuming a transmission efficiency of 0.90 at maxdmun vehicle speed results In a mardmum possible vehicle spoed of $73.25 \mathrm{mile} / \mathrm{h}$ at unity degree of undergearing. Phis entails an overali top gear ratio change from 0.0152 to $0.0148 \mathrm{mile} / \mathrm{h}$ per rev/min. These figures were derived by following the calculation procedure outlined in Section ES for the comparison of engine characteristics.

The drag force expression of vehicle a is given by
$\mathrm{Fa}_{\mathrm{d}}=0.0179 . \mathrm{W}+0.025 . \mathrm{V}^{2} 2 \mathrm{bf}$
This enables the juxaposition of the two now load lines to be seen in relation to the standard load line on the engine characteristice (Fig. E5.1). Simply increasing the vehicle woight without modifying the overall gear ratio overgears the vahicle. The engine speed at maximan vehicle speed is shown to be $4800 \mathrm{rev} / \mathrm{min}$. This represents a maximum vehicle apeed of

$$
4800 \times 0.0152=73 \mathrm{milo} / \mathrm{h}
$$

This is iittio different from the maximan apeed given above as a reault of changing the overall top gear ratio to maintoin unity degree of undergearing.

The increased waight load line maintaining unfty degree of undergearing is seen to be very ciose to the standard line at high apeed and to deviate from it a little at low engine apeede.

Fig. E5.2 shows the calculated steady state fuel consumptions
for the two 20% indreased weight conditions as compared with the standard case (see also Figa E4.8). Table E5.1 outlines the calculations in the compilation of Figs E5.1 and E5.2.

Fig. E5.2 shows little dipference in the steady-state fuel consumption between the two 20% increased weight conditions. Modifying the overall top gear ratio to malntedn unity degree of undergearing slightly worsens the fuel consumption in the mid-speed range. Fig. B 5.2 shows also that the weight of a small petrol enginsd vehicie has little effect on the ateady-state fuel consumption. In fact a small increase in weight is shown to better the fuel consumption very slightiy in the mid-apeed range. This accords with experience. The fuel consumption returned from a ling holliay run is rarely worse than that for normal usage, and may be considerably bettor. This may be partly as a result of decrease in the proportion of "warm-up" time to journey time (56). However, this benofit ia maintained on a long holiday run, even though the weight of the vehicle has increased considerably from that of normal usage and the avarage apeed of the run is probably highor (57).

The conclusion to be dram from Fig. E5.2 is that a small change in the weight of a petrol engined vehicle aauses very iittle change in the steady-state fuel consumption. Becauge the load line of auch a vehicle is far removed from the optimum control line and because the slope of the specific fual consumption contours is steep near the
load line, a amall increase in vehicle woight may actually result In a better match between engine and vehicle and a better oteadystate fuel congumption. However, an increase in vehicle weight mast increase the fuel consumptions during transit conditions, since more force is required to accelerate and retard the vehicle. Thus the overall fuel consumption can be expected to increase, with vehicle waight. In relating ateady-atate fuel consumption figures to the expected overall figures therefore, the vehicle weight must appear as a factor.

The Author has shown elsewhere (1) that a massive increase in the waight of a petrol englned vohicle results in an increase in fuel consumption. Fig. E5.3. taken from Chapter 4 of whe Pesting of Internal Combuation Engines" (1) depicts the calculated fuel consumption of Vehicle A in its unladen and laden conditions. This difference 1s 7 cwt. and represents a weight increase of some 40\%. PLg. E5. 3 suggests a maximum in the laden fuel consumption (mile/gall) curve at a vehicle speed of $25 \mathrm{mile} / \mathrm{h}$ approximately. Also, the laden and unladen curves become closer together as maxdmum vehicle apeed is approached, emphasizing the predominance of aerodynamic drag at high vehicle speed.

Fig. E5. 3 was produced on the assumption of Vehicle A in atandard trim having its engine in the standard condition with ono carburetter and with its normal overall top gear ratio of 0.0152 mile/h per Pev/min.

It is of interest now to etudy the effect of the weight of a large comarcial vehicle on the steedy-state fuel consuaption. The vehicle chosen is the 23 ton vehicle represented by Fig. 54.9. Fig. E5.4 is a reproduction of Fig. B4. 9 with two edditional load lines representing a decrease in vehicle weight of 25\%. ${ }^{\circ}$ Onity degree of undergearing is assumed for one comation and the standard overall gear ratio assumed for the other.

F1g. E5.5 shows the calculeted steady-state fuel consumption for these two conditions in relation to the atandard condition. Thia shows that the offect of woight is marked. A 25% reduction in vehicie weight results in a decrease in fuel consumption of some 20\%. This decreaso is a result of the form of the compression 1gnition engine characterietics. Than optimun control line being closer to the load line and the slope of the specific fuel consumptio n contours being lesa ateep than that of the petrol ongine.

Again, there is a small difference only in the steady-state fuel consumption between the two "258 decrease in weight" conditions. The line correaponding to an overall gear ratio change, in order to maintain unity degree of undergearing ahows a slight improvement. This is to be expected, since the other condition is undergeared.

The general conclusion here is broadily in line with Bland's (59) conclusion pablished in "Bus and Coach" concerning the fuel economy of coaches ontitied "Saving weight means saving moniey".

He suggesta a saving of 0.56 to $1.00 \mathrm{mile} / \mathrm{gall}$ for every ton weight reduced. His rule of thmb guide for the fuel consumption of a double-decker bus on about-town use is $0.75 \mathrm{mile} / \mathrm{gall}$ per , ton weight, thus tying the fuel consuraption exclusively to weight.

2) Gffect of overall gear ratio

Two studies are made, as with the previous sub-section. The first is representative of a small petrol engined vehicle. Againg, Vehicie A with the twin s.u. version of ite ongine is used. The second is again the 23 ton commeraial vehicle.

Fig. E5.6 depicte the Vehicle A engine characteristics with Its normal load line (shown as a full lino and marked $O C R=0.01520$) and with 58 changes in overall gear rationbatween 15% high and 10% low. At an overall gear ratio of 0.01748 (158 high), the maxdmum speed of the vehicle is

$$
4160(\mathrm{xev} / \mathrm{min}) \times 0.01748=72.8 \mathrm{mil} \theta / \mathrm{h}
$$

a decrease of some 4.28 from the optimum. At the other extreme taken, the maxdmum speed of the vehicle at an overall gear ratio of 0.01368 mile/h par rev/min may be shown to be $74.5 \mathrm{mile} / \mathrm{h}$, a decrease of some 2% only.

Fig. E5.7 depicts the corresponding steady-state fuel consumption curves and table E5. 2 outlines the intermediate calculations. The curves in Fig. E5.7 show that overgearing gives a amall but oignificant gain in ateadymatate fuel consumption but that the rate of gain deminishes as the overgearing is increased. Undergearing, on the other hand, results in quite a high loss in economy.

P1g. B 5.8 is the heavy comercial vehicle equivalent of Fig. B5.6. Table E5.3 outlines the intermediate calculations for the commercial vehicle and Fig. B5.9 plots out the corresponding steady-state fuel consumption curves.

Fig. E5.9 produces a vcry similar result to that of Pig. E5. 7 namely, that overgearing operates on the law of diminishing returns and that undergearing is costiv in terns of fuel.

The overall concluaion to be drawn from this study is that a careful compromise mast be made between steady-state fuel consumption and acceleration in top gear. Alternatively, consideration should be given to special gear ratios to cater for one or both of these performance paramaters.

3. Effect of zerodynamic dran coefficient

Again, Vehicle A with its twin e,ue engine and the 23 ton commeraial vehicle are taken as being repreaentative examples of a small petrol and a heavy compression ignition vehicles respectively.

White and Carr (24) show that the aerodynaric drag coofficiemt of a large number of motor cape 110 botween 0.33 and 0.56. Vebicle A is near the mean of this range with an aerodynando drag coefficient of 0.495 . By considering, therefore, three cases for the small petrol vehicle, the normal aerodynamie drag, a 25% reduction and a 25% Increase, most of the range quoted by White and Caxr is covered. These threa cases are considered twice. Firgt with the overall gear ratio altered also to maintain near unity degree of undergearing. This woild be the case if the mandacturer were to alter the aerodynamic drag of his vehicle. Secondly, assuming no chang in overall gear ratio from normal, as would be the case if a vehicle owner vere to add a roof rack or "fair-1n" the bodywork.

Fig. E5.10 shows the engine charactaristics for the first conaideration with the degree of undergearing fixed at the normal value of near unity. Little difierence is discernable between the three curves, hovever, the " 25% 2ow" 11 in is nearer the optimin control 11 no. Fig. 5.11 shows the corresponding calculated stecdy-state fuel consumption curves. This chiws substantial gains in fuel econory throughout the running range as a result of reducing the aerodynamo drag coefficicnt. This gain 1 a approximataly 20% at low speed rising
to 30% at high apeed. Thls explains the good fuel consumption of some contimental cara which, in general, have lower aerodynamic drag coefficients than british cara (9).

To obtain the normal degreo of uadergearing, the overall gear ratio is $0.01403 \mathrm{mile} / \mathrm{h}$ per rev/min for the high C_{D} case and $0.01640 \mathrm{mile} / \mathrm{h}$ per rev/min Por the low C_{D} case. These figures were flxed using the method outlined in Section for fixdig a typical load lins. Although Fig. 55.10 shows gimilar specific fuel consumption flgures throughout the ongine apeed range, the real gain by reduaing C_{D} is in the lover power requised to propel the vehicle. Hence the product (s.f.c. $x v_{0} n_{0} p_{0}$) to give the fual flow rate is much lower in the case of the low C_{D}. A further, secondary benefit is the increase in overali gear ratio necessary for the low C_{D} case in order to maintain undy dogree of undergearing. Fig. E5.12 depicts the engine characteristic plot for the sedond consideration. The three load lines are shown and the overall goar ratio is maintained at its normal value of 0.0152 mile/h per rev/min. These Load Iines are much widar apart than those of F2g. E5. 10.

The corresponding ateady-stato fuel consumption curves are shown In Fig. E5.13. These are of the aame trend as those of Fig. E5.11, but the effect of change in the aerodynamd 0 drag coefficiont is not quite so dramatic.

From the point of view of steadymstate fuel consumption therefore, it is well worth paying attention to the serodynamio shape of a motor
car. This conoluaion applies both to the mamufacturer when considering the styling and the ouner when contemplating the adaition of appendagea. Dawley (70) and Cato; and Meek (81) show the effect of components and of minor changes in aerodynamio shape.

Turming now to the heavy commercial vehicle, Fig. E5.14 shows the $t 25 \%$ change in the aerodynamic drag coefficient lines on the engine characteristic plot. This plot assumes constant and unity degree of undergearing. Uaing the method outlined in Section 4 the overall gear ratios becone respectively for the high drag case 0.02681 and for the low drag case, $0.03038 \mathrm{mile} / \mathrm{h}$ per rev/ min. The corresponding steady-atate fuel consumption plots are shown In Fig. E5.15. This shows a large saving in fuel costs as a result of reducing the aerodynamic drag coesficient, but not quite as large a saving' as for the small motor car. This is to be expected because the aerodynamic drag of a large, heavy comercial vehicle is not eo high in relation to the rolling resistance as that of a small motor car.

F1ge. E5. 16 and E5.27 are the corresponding plots for the heavy commercial rehicle assuming that the change in aerodynamic drag' coefficiont is made with no change in overall gear ratio. Pig. E5.17, when compared with FIg. E5.15, shows virtually no difference in the change in fual consumption when maintaining a constant degree of
undergearing or when maintaining a constant ovewil gear ratio. This conciusion could be implied also from a study of Pig. E5.9.

While the saving is shown to be less for the heavy commercial vehicle when expressed as a percentage, it is, however, just as important to study the aerodynamic shape of such a vehicle. The actual cost involved itself is greater because the vehicle is greater. Also, the vehicle has to operate commercially as an economical proposition. This requirement need not be true for a private motor car. Joyner (65) ahows that the fuel cost of a heavy commercial vehicie is by far the higheat cost when expressed as cost per mile and is four times that of the first cost.
\therefore The overall conclusion, therefore, is that the aerodynamic drag coefficient has a marked effect on the steady-state fuel consumption of a vehicle. It is unfortunate that the actual fuel consumption of a vehicle in normal operation is appreciably higher than that predicted by ateady-state considerations., A great deal of the apparent benefit to be gained by reducing the aerodynamic drag coefficient is therefore lost.: Warren (58) shows a measured $16-18 \mathrm{mile} / \mathrm{gall}$ for a car of European mamfacturer in the 20 to $30 \mathrm{mile} / \mathrm{h}$ speed range described as "normal urban driving": This compares with a measured steady-state figure of $35 \mathrm{mile} / \mathrm{gall}$. In the $40-45$ speed range described as "fast : traffic drigingn the measured overall fuel consumption is 23-26 mile/ gall compared with a eteady-state figure of 30 mile/gall. For ${ }^{\text {n }} 60-65$ mile/h thruway driving ${ }^{n}$ the measured figures are very aimilar to the
oteady-atate, $23-25$ compared whth 25 mile/gall. One test on a car in a heavily congestod area, where the driver was making 32-37 traffic stope per 10 wiles, each with n average time of 150, showed a fuel consumption of $16-18$ aile/gall.

As the building of motorways and high apeed roads contimes and as leisure time to make long trips increases, the injortance of the aerodynamic drag of a motor car increases (57). The extension of the motorway notwork benefits also the commercial vehicle operators. Hence, it is becoming important also to pay attention to the aerodynamic drag of comercial vehicles (see also Joyner (65)).

There are a maber of suggeations as to where savings may be made in the aerodynamic drag of a vehicle. Cato and Meakr:; (81) suggeat from a series of wind tunnel teats that a wing mirror costa seven cents in fuel per 1000 miles at $65 \mathrm{mile} / \mathrm{h}$. An advertiaing board, similar to that fitted to taxds, can reduce the fuel consumption figures by 1.5 mile/gall. They suggest however, that attention should be paid to reaucing the projected frontal area of a vohiole. Their conclusions are based upon ateady-state considerations.

Perhaps the first component on a motor car worthy of study is that suggested by the Author in the discussion of a paper by White and Carr (24), namely the engine cooling system . Dawley (70) states that the cooling system of a convontional layout accounts for about 10% of the aerodynamic drag. White shows elsewhere (9) that the cooling drag
is quite aignificant. Careful attention to the design here must prove beneficial since, from basic thermodynanics, the adiition of heat to a cucted system is capable of returning a nott thrust. Bffort in this direction should result in a better cooling syatem, . less drag without upsetting the styling of the vehicle. Other componente, such as windscreen, rear window, wings etc. may be subjected to a more long term programe aince production, styling, handiling and possibly safety are involved.

Joyner (65) suggests that for a commercial vehtcle having a van type trailer, the frontal area should be no lagger than that required for the loads to be carried. He suggeats further that the engi no driven accessories should be chosen carefully and that an ergine having a good match vith the vehicle be chosen.

4. Effect of ensine alize

It is of interest now to look at the offect of engine size on the steady-state fuel consumption. Earlier studies (see Section E4) have shown that an incressed engine output does not necessarily result in a worsening of the steady-state fuel consumption. The match max be better.

Vehticle A is again chosen as boing representative of a anall petrol engined vehicle. Hewever; since the characteristice of eimilar engines to that of vehicle a but of differing size were not available for this gtudy, it was decided to use throe engines of the Fiat range, the characteristics of which are avallable through the M.I.R.A. reports on forelgn vehicles. The three engines chosen are the engine fitted in the 1964 Flat 850 S of 843 ce capacity, the engine fitted in the Autobianchi Primula of 1221 co capacity, and the engine fitted in the 2960 Flat 2100 ealoon of 2100 co capacity. The characteristics of these ongines are presented as plots of ongine torque against engine speed. These have been translated to plots of engine power against engine speed in the manner described in Section E3 using computer program B184. P1gg. E5.18, E5.19 and E5.20 reapectively ahow these engine characteristics together with the load line of vehicle A. A degree of undergearing of unity is assumed for each of the match studies for comparison purposes. Hence, the overall gear ratios are reapectively, 0.01383, 0.01618 and 0.01936 mile/h per rev/min. These three characteristic plots may be seen
to be vexy similar. Perhaps the general officiency level of the large 2100 ce engine is slightiy highor than that of the other two. The bump in the full throttle line of the large engine near the maximum power opeed is discernable also in the original MIRA curves, as also is the deviation in the 0.500 speciflc fuel consumption line show in Fig. B5.19.

Fig. B5.21 shows the corresponding, calculatad stcedymate fuel consumption of Vehicle A when fitted with these engines. This shows a relatively small, but noticeable difference between the 1221 cc and the 2100 ec engine, the larger engine roturning the poorer fuel consumption. These two curves may be seen to draw together at high vehicle speed.

The curve of the small 843 oc engine shows large gains at lou vehicle speeds. These inftial gains diminish rapidly as the vehicle speed increases such that, at $65 \mathrm{mile} / \mathrm{h}$, the largor 1221 ce engine returns a better fuel consumption. The naximun power of this small engine is similar to the normal engine fitted to Vehicle A. The steady-state fuel consumption curve is genarally aimilar, perhaps a littlo better than that of the normel engine.

It would be unsafe to draw firm, general conclusions from this study. Its scope is not sufflaiently wide. However, the sugeestios is that a small engine produces a vary good fuel consumption at 2ow vehicle apeeds. an increase in the aize of engine rapidiy reduces the benefits to almost a common level. at high vehicle apoeds, the
suggestion is the match is better with the larger engines. Cornell (57) supports this conclusion in his study of three engines powering an American motor car. The enginas were a swall 6-cylinder, a large 6-cylinder and an 8-cylinder respectively. His graphs shou gains with the smaller engines at low speed with very little aifferenco at high vehilclé speed.

It is important therefore, to study the effect of engine aize very carefully during the deaign etage of a vehicle. The econony benefits of a anall engine have to be woighed very carefully against the better performance of the large ongine.

Turning nou to the 23 ton commercial vehicle powered by a compression ignition engine. Fig. E5. 22 depicts the engine characteristics of a smaller ongins to that previously considered, (see Fig. afing) but of having the same manufacturer and of similar characteristics. Fig. E5. 23 shows the oharacteriatics of a larger compression ignition engine, the manufacturer of which is not common to the other two and the engine is a turbo-charged twomstroke. However, the characteristics look very aimilar to those of the other two. The load lines of the 23 ton truck are shown on these two plots again assuming unfty degree of undergearing for the purposes of comparicon. Fig. E5. 22 shows the position of the load 2ine on the omall engine characteriatios close to the optimam control line. The Author is indebted to A. Rowbottom (104) for the supply of the characteriatics Aopicted in Figs. E5. 22 and E5.23.

Fig. E5.24.shows the steady-state fual consumption curves of the large engine and the small engine in relation to the "normal" engine conaldered previously (see the "8.0 hp/ton line" on Fig. B5.5).

The suggestion to be made is sfoilar to that for the petrol ongines that a smail engine shows lasge gains in fuel econory at low vehicle apeed with the poaition reversing at high vehicle speeds.

It would be of help in furthering this study to have a methomatical model of a set of typical engine characteristics. Perhaps In non-dimensional form which may be distorted at will to represent say a potrol engine or a compression ignition engine. Such a model would be of help generally in a parametric atudy aince it yould eliminate the peculiarities of a particular engino and allou very amall changes in a parameter, rather than the large staps in considering oay three different engines. It is intended to carry out this woris in the near future.

5. Automatio transmissions

The distinguishing feature of a conventional autonatic trausmission is its use of a torque convertior. This unit, by its very. nature, introduces a derree of "slip" in the drive line, hence a degree of power loss. A full steady-state, match study may be conducted between a vehicie and its automatic transmission and engine in just the asme way as outiined above by first conductire a separate match atudy between the engine and the torgue converter, as outlined in Section F3, uaing computer program BO7n. This separate match study affords the characteristics at the output shaft from the torque converter. The angine characteristics may then be related to this output shaft and the vehicle-powar unit match conducted as above.

The engine-torque converter match allows for tho power absorbed by and "front pump" in the tranimisesion. The vehiole-powar unit match study must allow for any "xcar pamp".

Studied of thite nature yiela information on the effect of different torque converters on the ateady-state fuel consumption. This effect is likaly to be small aince Section F3 shows that the coupling point of the torque convertor is reached at quite a low vehicie speed. A typical vehicle speed at the coupling point is half the maxdmum vehicle speed for steady-state running.

Warren (58) has conducted road tests on two large cars of American mamufacturer having automatic transmissions in conjunction
with a maber of European mamfacture: and concludes that tho poorer fuel consumption of the former is not primerily due to the automatic transmission, but that it may, be a contributing factors. Forater (93) has conducted tests apecificaily to ovaluate the effect of an automatic transmission. He used two cara (presumably similar, although he does not eay) and regularly exchanged irivers and transmissions. He concludes that an automatic transmisaion. causes a 6% - 10% increase in fuel consumption and that it is. ; responsible for more fuel being consumed during transient conditions. The overall increase in the fuel consumption be dismisses as baing within the tolerance of vehicles and driver babits. This conclusion is fairiy representative of the conblusion of road teat reports on mamal and automatic velifies:

Cornell (57) suggests that the steady-state fuel consumption of an automatic vehicle could be better than a mamal at high vehicle speed because the drive axie ratio is generally higher geared (lower mmerical value of gearing) and because the engine mizture atrongth could be leaner. His tests on otherwise identical cars suggests a saving of $1 \mathrm{mile} / \mathrm{gall}$ by employing an automatic transmission undar steady-state, high speed conditions.

SEGTOM E6

Conclusions

1. The engine characteriatics and the vehicle characteriatics should not be assessed independently. A full match study is important and necessary at the design state.
2. A full match study is capable of prexicting the ateady-state fuel consumption of a vehicle.
3. The technique of reducing the "ray" engine test bed results to produce the engine power characteristic plot and the techniques for converting from torque to power require further devolopment.
4. A full study is required of the effect of transient bshaviour o n fuel consumption. Here the statistical ansylsis technique of Smith et al (107) and/or the laboiatory rig simulating a complote vehicle of Genbom ot al (108) may be of use.
5. It is thought that vehicie mass has an important effect on the transient fuel consumption. .
6. The cevelopment of the "atratified charge" engine should be studied carefully, aince it cffords a better match with a conventional vehicle than does a petrol ongine.
7. The gas turbine study eaphasizes the validity of conclusion 1. above. The steady-state fuel consumption of a vehicle powared by a gas turbine is appreciably better than a cursory glance at the full loed charactoristics of the engine uould suggest.
8. It may bo possible to modify the components of a gas turbine ongine to produco a better match between the engine and the vehicle.
9. The good aatch between engine and vohicle of the gas turbine should ensure ite place in the heavy commercial field at least. This position could be extended by the introduction of variable geometry inlct guide vanes to the turbine and/or some othor sophistication to enhance the part loed efficiency while still retaining the excellent torque characteristics. An important considaration here is the multi-fuel capabilities of the gas turbine engine.
10. The basis for the comparison of engino characteristic plots outlined in Section E4 is reasonable in that it talces account of a typical load. This feature is ossontial in any comparison. Howover, further dovelopment and proving is required.
11. A small increaso in the woight of a patrol engined vehicle has little effect on the steady-state fuel consumption. This conclusion is irrespective of thether the ovarall gear ratio is modifled to maintain constant degree of undergearing. A large increaso in vehicle weight however does have a pronounced effect.

Hoight is shoun to bo inportant rith a vohicle powered by a coopression ignition engino. again, this conciusion is volid irrespactive of whether constant defrce of undorgoaring is maintained.

A further detailed study is required on tho effect of vehicle weight. This should bo conducted by very coall chanzos in vehicle woight over a vide range.
12. Ovargearing a vohicle gives cignificant geins in the ateadystate fuol consunption, but the rate of gain dininishes as tho degree of undorgoaring decroases. Undorgearing results in a significant worsenting of the stecay-stato fuol consumption. This conclusion is valid both for potrol and congreseion igrition engincd vchiclos.

Tho degreo of undorgcaring of a vehicle cad/or the fititing of an ovordrivo unie roquiro crroful consideration at tho dosign stage in ordor to provide a good compromiso betwoon top gcor accolaration end fuel consumption.
13. Changos in the cerodynanic drag coofficiont of a vehicle procurce significant chances in the steady-stato fuel consumption. 'It is confirnced that an offori ohould bo aado to rcduce the aoroaynamic drog of future Qcoigns and that the cooling sybtem warrants the first attention, oinco ite cocification is likely to have litilo effect on styling, salos appeal or cafoty.
14. The effect of ongine size in a vehicle is not fully conolusive. Studies sugzest however, that a small cngine prociuces a very low steady-state fuel consumpticn at low vehicle speeds cnd that this situation worsons rapidily to a comon level as engine size is increasod.

At high velicle speode, a large enzine ony return a oignificantly better steady-state fuel consumption than a small ongine.

This means that the size of enjine requires very caroful consideration at the design stage of the vehicle in order to optimise on fuel consumption, maximum vehicle speed and accelerative performance. Also, since the effect of engine size may vary dramatically with vehicle speed, the effect of vehicle transient behnviour must be consldered. Further study may enable each factor to be costed and a full optimisation study made on the effect of engine size.
1.5. A mathematical model is required of the tynical engino charactoisistics of, say, a petrol ongino and of a compression ignition entine. This could be produced by initially describing the specific fuJl consumption contours by simple ellipses. Such a modol could be easily distorted to aimulate different effects. It vould be a relatively simple matter to progron it for a digital computer and should prove on invalunble tool in the study of tho effect of engine aizo, vehicle weight and other important parametoro.
16. In conjunction tith conclusion 15. above, tork cact contime in an atcieapt to "non-dimensionalizo" the match study plote in order to assist studies of a thoorotical maturo and as an aid in comparison (seo also conclusion 10 nopve).
17. If, as Joynor (65) ougjosis, the fuel bill of commerciol vehicle operation is so high, a concentratcd offort is due to retuce it. Fanch can bo done at the design otege by match atudies.
18. Tho use of an automatic transmission in a cotor car slightly voroens the fuel consumption due, in port, to the offect of on autonatic transnission curing trinsients. By running the mixturo strength of the onfine woak (loan), the steady-state fuel consumption at bigh vehiclo speed can bo botier than the mamal transmission version.

PABT \mathbf{F}

Performance of Vehicles having

Automatic Transmissions

SECTION 8

Introduction

A vehicle having a torque converter in the transmiasion line, or and device which removes the simpla, direct relationship between ongino speed and vehicle ajeed, should be treated differently from the perfornance calculation point of view. The computer program BOO1 developed for mamal transmissions is not suitable. It is desirable, however, to develop a technique for dealing with the performance calculation of automatic transmission vehicles because their popularity is increasing.

It is outside the scope of this work to describe the many types and deaigns of automatic transmissions and torque converters. A full survey and history of development is given by ciles (39) and, more recentiy, a catalogue of the different types in use today is given by Mitchell (40). This latter reference shows that practically all of the dosigns in use today in Europe and Japan consiat of a torque converter in series with some form of atepped ratio gearbox. None incorporate a drive line by passing this system. The torque converter is used to give extra and a variable torque multiplication, some degres of "cushioning" in the drive and for its ability to give a amooth take-off to the vehicle.

Part F, therefore, is devoted to the development of a suitable technique for colculating the performance of a vehicle having a torque
converter in series with a stepped ratio gearbox type of transmission. A typical example being the Borg-Harner 35, the essential components of which, from the performance calculation point of view, are outlined in Fig. Fl.i.

The input shaft to the torque converter ia driven, either directly or through gears, by the engine. To this input shaft is fastened the torque converter impeller. The drive is then taken through the fluid to the torque converter turbine and thence to the gearbox. The raaction member is arranged on a free-wheel device such that it can turn in one direction only. When the reaction member is stationary, a degree of torque multiplication ia provided by the torque converter. When the reaction member is free-wheeling, the drive through the torque converter is aimilar to that through a fluid flywheel and there is no torque multiplication. The point at which the reaction member starts to free wheel is terned the "coupling point".

The standard Borg-Warner 35 transmission incorporates two oll pumps in the gearbox. Both puaps supply fluid to the control system within the gearbox. The front pump is driven by the ongine and is the larger. The rear pump is driven by the transmission and may be used to activate the control system when the vehicle is being "pushstarted," that is when the engine is out of action. It is becoming the practice, however, to dispense with the rear pump.

The gearbox provides a muber of stefped ratios uhich are automatically changed at prometormined vehicle speeds (and load conditions). Hence the gear change speeds with an automatic trangmission are independent variables which must be specified. This constitutes an important difference between the performance calculations for automatic transmissions and mamal transmissions. The other essential difference is that there is no simple direct relationship between engine apeed and vehicle speed. In order to calculate the engine speed at a particular vehicle speed, the characteristice of the torque converter mast be knoun.

SECTION F2

Characteriatic: of the torque converter

In order to effect the match between an engine and its torque convertar it is necessary to marry together the characteristics of both. The relevant engine characteristic is ite torque against speed curve for the throttle angle or fuel purap rack position under consideration. In this work, full throttle or full rack openting.

The relovant torque convertor characteristics are the curve of

K-factor $=$ input syeed $\left(N_{E}\right)$ against output shaft spoed $\left(K_{0}\right)$ $\sqrt{\text { ingut torque }\left(T_{E}\right)}$
ingut shaft speed (H_{s})
and

Torque ratio $=\frac{\text { output shaft torque }\left(T_{0}\right)}{\text { input shaft torque }\left(T_{\text {I }}\right)} \quad$ against
output sfaft speed (N_{0})
input shaft speed (N_{E})

It is shown bolow that both these curves are unique for a particular torque convarter.

Rayner (38) has analysed the fluid flow in a torque converter and has set up the three bsaic equations governing the performance
of a torque convarter. In simplified form thoy are :Power equation
$a\left(\frac{E_{B}}{\left(C_{m}\right.}\right)^{2}+b\left(\frac{E_{E}}{\left(C_{m}\right)}\right)+c\left(\frac{N_{0}}{C_{m}}\right)^{2}+d\left(\frac{\left(N_{O}\right)}{\left(C_{m}\right)}+e=0 \ldots \mathrm{P} 2.1\right.$
Input torque equation

$$
\frac{T_{I}}{C_{m}^{2}}=P \cdot \frac{g_{m}}{C_{m}}+8
$$

Output torque equation
$\frac{T_{0}}{C_{m}}=$ P. $\frac{N_{\mathrm{E}}}{\mathrm{C}_{\mathrm{m}}}+1 . \frac{\mathrm{N}_{\mathrm{O}}}{\mathrm{C}_{\mathrm{m}}}+\mathrm{m}$
The terms a, b, c, d, e, P, g, I, m are constants for a particular torque converter and are functions of the geometry of the torque converter only. They are made up from blade radil, angles otc. These terms are doveloped in full by Raynor (38). The term c_{m} is the "meridianal component of fluid velocity" within the torque converter. This term is of interest to the torque converter vesigner but of little interest to the Performance Engineer. Accordingly, it
is desirable to eliminate it from the above equations.
Defining

$$
\text { apeed ratio SR }=\frac{\mathrm{B}_{0}}{\mathrm{~B}_{\mathrm{E}}} \quad \quad \mathrm{FR.4}
$$

and using the identity
$\frac{V_{0}}{U_{m}}=\frac{N_{B}}{C_{m}} \times \frac{\mathbb{N}_{0}}{\mathbb{N}_{B}}=\frac{N_{B}}{V_{m}} \times S R$

- P2.5
in equation P 2.1 in order to form

The term C_{n} may be isolated from equation F2.2, giving
$C_{m}=\frac{-f_{0} \cdot \mathbb{V}_{\mathrm{B}} \pm \sqrt{\mathrm{P}^{2} \cdot \mathrm{~N}_{\mathrm{K}}^{2}+4 \cdot \mathrm{~T}_{\mathrm{B} \cdot \mathrm{G}}}}{2 . g} \quad$ F2.7
whence
substituting equation F2.8 into P2.6 affords a unique relationship between the term ($E_{E_{E}}$) and SR for the particular torque converter (要 $)$
under consideration having design constants a, b, c, d, etc. This relationship therefore, links together input torque and shaft speed and output shaft speed. It is now necessary to find another relationship to give the output torque in order to describe the full characteristics of the torque converter.

This second relationship way be obtained by rewriting equation FR. 3 as

$\frac{T_{0}}{C_{m}^{2}}=f \cdot \frac{N_{E}}{C_{m}}+l\left(\frac{N_{E}}{C_{m}} \times S R\right)+m$
and dividing equation F2.9 by P2.2 to give

- 52.10

Again, substituting expression F2. 7 into F2. 10 yields a relationship between torque ratio $\binom{T_{0}}{\left(T_{I}\right)}, S R$ and the K factor $\left(\frac{E_{T}}{\left(T_{E}\right)}\right.$.

Since the K factor against speed ratio curve is unique, there exists a unique relationship between torque ratio and speed ratio for any particular torque converter.

The above relationships are given in full, together with a comprehensive torque converter deaign procedure in a tech. note by Lucas and Rayner (44).

A typical set of torque converter curves is shown in Fig. F2.1.

SECTION ${ }^{\text {ST }}$

Match between engine and torque converter

Fig. P3.1 illustrates the problem to be solved of an accelerating vehicle and an accelerating engine coupled by a torque converter. $T_{\text {I }}$ is the steady state torque output from the engine and T_{i} the input torque to the torque converter. It has been demonstrated by Ct (42) that it is permissible to assume quasi-steady conditions for the operation of the torque converter. Hence

$$
T_{i}=\left(\frac{(\text { impeller, or pump speed })^{2}}{K-f a c t o r}\right)
$$

using the steady state torque converter K-factor defined and described in Section F2, The equation of motion for the engine becomes therefore

$$
T_{E}-T_{i}=I_{0} \cdot \frac{d W_{E}}{d t} \quad-\text { P3.1 }
$$

where W_{E} is engine speed in rads.
The equation of motion for the vehicle itself is
$T_{0} \times \frac{D A R}{r_{r}} \times R_{T}-F+\frac{d V}{d t} \times \operatorname{m}_{\mathrm{E}} \times \frac{22}{15}$
where the output torque from the turbine of the torque converter is given by

$$
T_{0}=T_{i} \times T R
$$

and V is the vehicle speed (nile/h).
Section $F 2$ shows both \mathcal{I}_{1} and Ψ_{0} to be functions of engine speed (w_{E}) and venicle speed (V) only (that is of speed ratio). Hence equations F3.1 and F3. 2 represent two non-Einear differential equations having time (t) as the indopendent variable and dependent variables W_{G} and V. It is more convenient, however, to consider vehicle speed (V) as the independent variable, aince the gear change points on a full throttle tine-to-spesd test of an automatic transmiasion vehicle are fixed at pre-determined speeds. Futting equation F3.2 into F3.1 and remarranging yields therefore

Equations P3.4 and F3.2 may bo solved indepondently using a standard mathomatical tochnigue to yield the enging speed at a particular vehicle speed during an acceleration man and the times to-speed.

The integration process may be commenced by finding the engine "stall speed". That is the steady otate, full throttle engino speed corresponding to a torque converter apeed ratio of zero. This may be determined from a previous match study between the engins and the torque converter or by setting

$$
\frac{d U_{B}}{d \nabla}=0
$$

in equation P3.4 and uaing an iterative techmque to find the engine speed at which the steady state engine torque (T_{E}) equals the torque convarter imput torque (T_{i}).

The gear changes present a problem since they represent a discontinuity in the integration procass. Ott (42) attempted to overcome the problem by specifying in some detail the gear change itself, thereby making the integration contimous, but necessitating the apecification of the gear change clutches, individual genr wheel inertias etc. Perhaps a more reasonable approach to the problem is to assume that the ongine acceleration becomes zero at a gear change. Hence the integration process continues again from a now start, the new boundary condition being the steady state ongino speed corresponding to the gear change vehicle specd. Again, this steady stace engine specd is found from a previous match study or by the iterative procedure outlined above.

A vehicle performance program (B167) was devised using the above philosophy and the Rungematta-Gill techntque for the solution of the differential equations. This program is listed and described in Appendix F5.
kow an important function of a vehicle performance program, such es B167, is that of a parametric study as an aid to the Design

Enginears. It is shown later in Section P6, and in particular in Table F6.1, that the torque converter itself has little effect on the time-tompeed of a vehicle. The choice of a particular torque converter is not made from time-to-speed or maximum speed considerations, but from engino noise, engine atall speed and engine response behaviour considarations. It is of greater benefit therefore, to study separately, and in sowe detail, the match between a particular engino and a particular torque converter. Once this match has been declared satisfactory, it is posaible to consider its performance in a vehicle.
adopting thite approach reduces considerably the compatational time involved, particularly when conducting a vehicle parametric study, since the calculations involved in the torque converter sngine match are settled, and need not be repeated for each parameter change.

Also, the time-tomspeed integration technique may be the simple technique outlined in Section Bl2 for mamal transmission vehicles. This, in itself introduces a considerable saving in computational time aince a vehicle speed step length of $2 \mathrm{mile} / \mathrm{h}$. may be used with the same order of accuracy to that ahown in Section B12. Using a step length greater than 0.1 mile/h, with the Runge-Kutta-aill process could result in an unstable aituation arising during the calculation, particularly as maximum vehicle speed is approached.

Several other difficultie3 were found with the Range-KuttaGill process. The first being the difeiculty in intorferring with the integration procedure in order to accomodate phenomena such as "wheel-spin" and the possibility that the specified final speed of the integration process may be groater than the maximum speed of the vohicle. Also, in considering the offect of engine inertia on vehicle performance, squation F3.4 shows that it is not posaible to consider the interesting and ultimate condition of zero engine inertia. An indeterminancy exists which shows the specified equations of notion to be no longer applicable. The problem is different.

It was decided, therefore, to devise a ateady-state matching procedure botween the engine and its torque converter and to evolve a technique whereby the results of this match study might be used in vehicle performance calculations, due allowance being made for the change in the match caused by the accelorating engine.

It is expected that the technique of using the Runge-KuttaGill integration process, as outlined in Appendix F5, may prove a more beneficial technique when dealing with the performance calculations of automatic vehicles having shunt transmissions or other complications.

Before deallng with the match study proper between engine and torque converter, a means has to be devised to deal with the torque
required to drive the fluid pumpe, particulariy the front pump. The front pump torque is subtracted from the engine torque before passing to the torgue convorter.

Since the majority of autoratic transmissions is of the type Borg-Warnor 35, i\& was decided to build into the aigital computer programs the Borg-Warner puap figures and to make proviaion for the substitution of any others, should that become necessary. It was decided also to ignore the fact that the control pressures within the Borg-Warner 35 alter during a goar change, thus altering the torque necessary to drive the punps. This change is quite small and the lovel of torque neccasary to arive the pumps is small also in relation to the torque output from the engine.

Fige. F3.2 and F3.3, kindiy supplied by Borg-Narners Ltd., depict the horsepower necessary to drive the front and rear pumps respectively. Δ high proportion of the power required in both cases constitutes mechanical loss which is largely independent of the pressure head on the puap. The total horsepcier absorbed figures were converted to torque figures to which fourth order polynomials were fitted.

Listed below is the matcling study digital. compater program BOTI designed to effect the match. Once again, use is made of the very versatile polynomial curve fit in order to describe the natch mathemotically.

Storage spaces $\operatorname{POMP}(1)$ to $\operatorname{HKMP}(5)$ give the fourth order polynomial for the front pump torque. This is followed by "Heading" cards. Statement mambar 2 reads in four fixed point mabers. NT is the mumber of points on tho engino torque curve, NK is the mumber of speed ratio points used to describe the torque converter characteristics. NPMP is any positive or negative integer. If, however, NPUMP is set at zero, the program will ignore the torque required to drive the front pump. If a non-zero integer is assigned to the fourth term NCARD, cards are panched out giving the polynomial coefficients of the relevent curve fits described belou ready for use in the subsequent vehicle performance program. If these cards are not required, NCARD should be set at zero.

If IT is read in as zero or a negative integer, the program will accopt the coefficients of a previous sixth order polynomial curve fit to the engine torque curve, together with the minimum and maximum allowable engine speeds. Betreen statement mamber 3 and 7 therefore the program deals with these coefficients. Fifty pointe on the $\therefore \therefore$. ongine torque curve are generated from which are subtracted the front pump torque figures:

If, however, NT is a positive integer, the engine spoed and torque figures are read in. To these is fittad a sixth order polynonial because it will be required in the subsequent vehicle performance program. The coofficients of this sixth order polynomial are
not used in this watching study program. The front punp torque figures aro then subtracted from the engine torque. Hence the conputer store holds WT points of engine torque less front pump torque figuros, lir boing 50 if the original corque curve was road in es a polyromial.

Statement mumber 9 reace in FK sots of torque convorter apeed ratio (SR), R-factor (AK) and torque ratio (FR) Pifures. These are uarried to tho IIT engine figures in tie iollowing manner.

First the engine K-factors are evaluated. That is engine output opeed divided by the square root of net engine output torque. The engine speed is then expressed as a aixth order polynomial function of the engine R-factor. Hence, for each of the torque converter specd ratio points, the ongine spoed is known elso. Since the speed ratio is spectifed and the torgue ratio of the torque convertcr known, the outjut corque from the torque converter versus speed characteristic is known. Thits the natch is complete.

Statement $12+6$ down to statement number 11 evaluates the horsepower into and the horsepower out from the torque converter. These figures and their difference are printed out. The difference is the power loss from the torque convertor dissipated as heat energy.

The program then proceeds to fit an oighth order polynomial to the output torque against output shaft speed figures for subsequent use in the vehicle performance program. This is discussed further below.

Also, a sixth order polynomial is fitted to the engine speed and torque corverter output shaft epeed figures, again for subsequent use in the vehicle performance program.

Finally, a card, elthar blank or bearing an integer is read in. If blank, the program ende. If an integer, the program suitches back to the appropriate statement mamber.

The polynomial curve fit sub routine is that listed in Appendix Bl.

Table F3.1 is a typical output from program BOT1. It represente a match study between the engine of vehicle B and a Borg-Warner 225K torque converter. As may be seen, the curve fita are very good. The curve fit of interest houever is the eight order polynomial deacribing the torque converter output torque charactaristic.

The crosses in Fig. P3.4 denote the match study points. Note the"coupling point" at $2500 \mathrm{rev} / \mathrm{min}$. approximately, at which the reaction member in the torque converter commences to freewheel. At output shaft speeds above the coupling point, there is no torque multiplication and the shape of the torque curve is very similar to that of the engine torque curve. The dots in F1g. F3.4 denote the evaluation of the eighth order polynomial at every 100 rev/min. Interval from zero speed to $6000 \mathrm{rev} / \mathrm{min}$. of the torque converter output shaft. The program used for this evaluation was B054 1isted in Appondix Bl.

The curve fit generally is good. The coupling point should not be quite so rounded, but this is of little consequence. Considaration was given to describing the output torque curve as two lower order polynomials meeting at the coupling point. The amount of work and computer time involved would be similar. This would produce the discontimity in the slope of the output torque assumed to exist at the coupling point.

However, aince this point is of little importance and since it may be deairable to cater for torque converters having more than one reaction member and hence more than one "coupling point," it was decided to retain the eighth order polynomial.

The asset of an eighth order polynomial is its versatility, and this can be its weakness also. The dull speed range of the engine must be specified for the reasons given in Part B, section 2. Similerly, the torque convarter data must be extrapolated to include a K-factor at least as high as the maximum possible engine. K-factor. If this is not done, the highest output shaft speed considered may be less than the speed obtainable during a performance run. How Fig. F3. 4 shows that an elghth order polynomial can veer rapidly off course outside the data range. In fact the output torque at $6000 \mathrm{rev} / \mathrm{min}$ given by tho polynomial used in Fig. F3.4 is -98.442 lbf ft. If it vere possible for the output shaft of the torque converter in vehicle B to reach
$6000 \mathrm{rev} / \mathrm{min}$, the vehicle performance calculations would be in error. However, since a high torque converter K-factor was included in the match data, the resulting eighth order polynomial is adequate, and it vas found in the later vehicle performance calculations that the torque converter output shaft speed at maximum vehicle speed was $5000 \mathrm{rev} / \mathrm{min}$. approximately.

The figures giving the horsepower into and out of the torque convarter emphasize the poorer fuel consumption of the automatic vehicle compared with its manual counterpart.

Program B071, therefore, enables the Designer to otudy in considerable detail the match between a particular engine and a particular torque converter before committing himself to vehicle performance calculations. The error columns in the curve fit print-outs confira that there is iftio or no error in the original data used.

The engine torque against engine speed, the output shaft torque against output shaft speed and the engine speed against output shaft speed polynomials fully describe the match mathematically and are used subsequently on the vehicle porformance program.

345

Wating of matching atudy

digital computer program

807

```
            MAS:ER 9071
            DIMENSIONC(16),R(5:),T(50),SR(SO),AK(50),TR(50),EK(50),A(7),EN(50)
            1,PUMP(5)
            CGMMONEK,H,r
            PUMP(1)e3.0724125B
            PUMP(2)=-1.144820A3
            PUMF(3)=.91;72275
            PUMP(4)=-.173875627
            PUMP(5)=.0110702038
        1 WRIIE(2,100)
            PEAD(1,101)
            WR1?E(2,101)
            WRITE(2,102)
        2 READ(1,103)VT,NK,NPUMP,NCARD
            IF(NT)O,0,7
        3 REAO(1,104)(A(I),IE1,7),QMIN,VBS
            C SIXTH ORDER POLYNOMIAL ENGIVE TOROUE
            Z=RMIN/1000.
            OO 4 I =1,50
            IF(NPUMP)20.0,20
            FPUMP=0.
            GO 70 21
            20 CONTINUE
            FPUMP=PUMP(1)
            OO 22 <K=2,5
            22FP(IMP=FPUMP+PUMP(KK)*Z**(KK-1)
            21 CONTINUE
            T(1):&(1)
            DO 5 Je2,7
            5T(I)=T(I)+A(J)*Z**(J-1)
            T(I)=T(I)-FDUMP
            R(I)=2
            Z=Z + (V3S-12MIN)/49000.
            4 CONTINUE
                NT=50
            JJ=7
            WRIME(2,117)
            WRITF(2,1\cup6)(1,A(I),I=1,7)
            WRITE(2,102)
            WRITE(2,102)
            IF(NCAQD.GT.O) HRITE(3,118)JJ,(A(1),I=1,JJ)
            GO TO 5
            7 CONIINUE
            8 READ(1,104)(EK(I),Q(I),I=1,NT)
C EK IS (ENGINE SPEED QPM)/10OO
C R IS ENGINF TOQQUE LFF FT
    WRIIE(P,1:5)
    J=6
```

```
        JJ= J+1
        CALL POLY (T,O,NT,J,O)
        WRI :E(2,117)
        WRITE(2,1:16)(I,C(1),I=1,JJ)
        IF!NCARD.GT.O' WHITE(3,118)JJ,(C(!),I=1,JJ)
        NRI:E(2,108)
        IF(:IPUAP)D,25.0
        OO 23 J=1.NT
        FPU:AP=2UM?(1)
        DO 24 !=2,5
        24FP(MMP=FPU:AP + PUMP(I)*EK(J)**(I-1)
        R(J)=R(J)-FכUMP
        23 CON:INJE
        25 CONPINJE
        DO 15 I=1,NT
        T(I)=Q(I)
        R(I)=EK(I)
    15 EK(1)=0.
C A NOW DENOTES (ENGINE SPEED RPM)/10OO
C T NOW OENDTES EVGINE TORQUE LRF FT
    O CONIINUE
        9 REAQ(1,104)(SR(I),AK(I),TR(I),I=I,NK)
C SR=SPEED RATID OF TC AKEK-FACTOR OF TC TRETORQUE RATIO OF TC
    I.AST=6
    LA=LAST+1
    DO 10 I=1,NT
    EK(I)#Q(I) 10./SQRT(T(.I))
C EK DENOTES (ENGINE K-FACTOR)/100
    10 CONTINUE
        WRITE(2.110)
        CALL POLY (O,O,NT,LAST,O)
        WRI(E(2.111)
        WRITE(2,106)(I,C(I),I=1,LA)
        WRITE(2.108)
        WFITE(2,114)
        DO 11 Ial,N<
        EN(I)=C(1)
        DO 12 Jm2,LA
    12 EN(I)=EN(I)+C(J)*(AK(1)/100.)**(J-1)
    EN(I)=EN(I)*1000.
    TCLOSS=0.
    ET=(EN(I)/A<(I))**2-TCl.OSS
    EK(I)=SR(I)*EN(1)/1000.
C EK IS NOW OUTPIJT SPEED FROM TORQUE CONVERTER DIVIOED BY 100O
    R(I)=ET*TR(1)
C R IS NOW OUTP:JT TORQUE FROM TORQUE CONVERTER. LBFFT
    PIN=2.*3.14159265*EN(I)*ET/33000.
    POUT=2.*3.14159265*EK(1)*R(1)/33.
```

```
    PDIFFEPIN-PGUT
    WRITE(2,115)EN(1),SN(I),PIN,PQUT,PDIFF
    11 CONTINUE
        NRITE(2,105)
        J=8
        JJ=J+1
        CAL!- POLY (.),O,NK,J,O)
        WRITE(2,109).
        NFITE(2,106)(I,C(I),I=1,NJ)
        IF(NCARD.GY.O) WRITE(3,118)JJ,(C(1),I#!,JJ)
        DO 14 I=1,N<
    14 R(I)=EN(I)/1000.
    C Q IS NOW (ENGIVE RPM)/1000
    C. EK IS STILL TC (OUTPIIT SPEED REV/MIN)/1000
        WR1(E(2,112)
        J=6
        JJ=J+1
        CAL! POLY (T,O,NK,J,O)
        WRI!E(2,113)
        WRITE(2,106)(I,C(I),I=1,J.J)
        IF(NCARD.FT.O) WRITE(3,1;8)JJ,(C(1),I#1,JJ)
        READ(1.107)J
        JF(J)13,13,3
        WRITE(2,108)
        60 !0 (1,2,3,4,7,8,6,9),.1
13 CONTINUE
        STOP
    100 FORMAT(3OX4ZHENGINE ANO TORQUE CONVERTER CHARACTERISTIC/I)
    101 FORMAT (80H
    I )
    102 FORMAT(1HO)
    103 FORMAT(410)
    104 F(JRMAT(160F:),0)
    1O5 FUGMAT(IHIIJX2OHPOLVNOMIAL CIJRVE FIT/5X73HITC OUTPUT PORQUE LBF FT.
    1)=Y AGAINST ((TC DUTPUT SPEED(REV/MIN))/1000)=X//)
    106 FORMAT(4(I3,2x,6!8.10,2X))
    107 FORMAT(I2)
    108 FCRMAT(IHI)
    109 FÏMATIIO9H.IPOLYNOMIAL COEFFICIENTS GIVING TC OUTPUT PORQUE IGF FT
        1 AS A FUNCTION OF (TC OUTPUT SPEED (REV/MIN)I/1000 ARE/)
    11? FORMAT(IHOIOX2OHPOLYNOMIAL CUPVE FIT/5X59H((ENGINF SPEED)/1000)=Y
        1 AGAINST (/ENGINE K-FACTOR)/IOO)mX//)
    111 FORMAT(92HOPOLYNOMIAL COEFFICIENTS GIVING (ENGINE RPM)/IOOO AS A F
        IUNCTIOV OF (ENGINE K-FACTOR)/1OO ARE/)
    1:2 FOFIMAT(1HIIOX2OHPOLYNOMIAL CURVE FIT/SXSGH((ENGINE RPM)/IOOO)=Y A
        IGAIAST ((TE OUTPIT RPM)/IONOIEX//)
    113 FORNAT(91HO2OLYNOMIAL COEFFICIENTS GIVING (ENOINE RPM)/IDOO AS A F
        IUNCTION OF (TC OUTPUT RPM)/1000 ARE/)
```

```
114 FI|RIATI2OH =NGINE.SPFFD RPM IAHTC SPEED RATIOGXISHHORSEPOWER INT
        IX1QHHORSEPONFR GUTGY?SHHORSFPOWEFLOSS FROM TC/S
    115 F(1H|AT(G1)x.G12.6,6X))
    118 FIGMAT(IHII)X2OHPOLYNOMIAL CURVE FIT/SY6IH(ENGINE TORQUE LBF FTIEY
        1 AGAINST (ENGINE SPEEU RPM)/IOOO)=X//I
    117 FDRMAT(86HOOOLYNOMIAL COEFFICIENTS GIVING ENGINE TORQIE AS A FUNCT
        1ION OF (ENGINF SPEED)/1000 ARE/)
118 FORMAT(I2/G(F16.10.2X))
        END
END OF SEGMEVT, LENGTH 934, NAME BO71
```


SECTIOR_P4

Allounce for engine inertia

By using the results of the match atudy outlined in Appondix F2 in the calculation of the performsnce of automatic transmisaioned vehicles, some procedure for allowing for the mismatch caused by the accelerating engine must be devised. The use of polynomials to describe the match makes this adjustment relatively simple.

Before studying the problem in detail, it was considered advisable to simulate a change in the match between an accelerating engino and a torque converter. Thte was achieved by using program BO71 in the normal way using the normal steady state torque curve of the engine and then by repeating the run with 10 lbf ft subtracted from the engine torque curve: The resulting torque converter output torque curves are shown as Fig. F4.I and the ongine speed against output shaft speed curves as Fig. F4.2.

A point corresponding to a particular speed ratio moves down and to the left as a result of the decrease in engine torque. Appendix F2 shows that the percentage change in output apeed in Fig. P4. 1 is half the percentage change in output torque. That is that

$$
\frac{\Delta N_{0}}{N_{O I}=0}=\frac{\Delta T_{0 I}}{2 \cdot T_{O_{I}}=0}
$$

Also, considering the shift of a particular point in Fig. F4.2, the percentage change in engine speed mat equal the perm centage change in output speed because the speed ratio is constant. A study of P1gs. P4.1 and P4. 2 shows these relationships to be true.

In order to consider in dotail the change in output torque resulting from a decrease in engine torque, Flg. F4. 3 is ahown. This is a "closemp" of a portion of Fig. Phol. Consider an accelerating vehicle at a particular vehicle speed V. If the engine has zero inertia, then match point A is applicable, and the torque converter output shaft speed is $\mathrm{N}_{\mathrm{O}_{\mathrm{I}}}=0$. Since however, a real engine has inertia, the match line shifte. The new point corresponding to the same torque converter output shaft apeed is marked in Flg. F4. 3 as point C. A study of Fig. F4. 3 shows that the output torque from the converter is now

$$
T_{O_{C}}=T_{O_{A}}-\Delta T_{O_{I}}-\Delta T_{O_{M}} \quad-F 4.2
$$

$T_{O_{A}}$ is the staddy running torque output
$\Delta T_{O_{I}}$ is the change in torque due to inertia
$\Delta \mathrm{T}_{\mathrm{O}_{\mathrm{M}}}$ is the change in torque due to mis-matching
Now, $T_{O_{A}}$ is known from the steady state matching study and it can be shown that
$\Delta T_{O_{I}}=\dot{\text { function }}(1)$ (vehicle acceleration (f)) and that.
$\Delta T_{O_{M}}=$ function $(2)\left(\Delta T_{O_{I}}\right)=$ function (3) (f)
The full derivation of these three functions is given in
Appeñdix F3.
It follows, therefore, that a relationship exists between the known steady manning output torque $T_{o_{A}}$; the actual output ${ }^{\circ}$ torque $T_{O_{C}}$ and the acceleration of the vehicle (f).

Appendix F3 shows this relationship to be

Applying. Newton's second law to the accelerating vehicle as a whole produces the relationship

$$
P=\frac{\mathrm{T}_{\mathrm{O}_{\mathrm{C}}} \times \mathrm{DAR} \times \mathrm{CR} \times \eta_{I}}{\boldsymbol{r}_{\mathbf{r}} \times \mathrm{P}_{\mathrm{E}}}-\frac{\mathrm{Fd}}{\mathrm{EE}} \quad-\mathrm{F} 4.4
$$

where the equivalent mass of the vehtale is given by

$$
\begin{align*}
& +\eta_{T}\left(\text { turbine inertia } \times\left(\frac{G R \times D A R}{r_{r}}\right)^{2}\right) \text { slug }
\end{align*}
$$

Equating relationships F4.3 and F4.4 and re-arranging produces the expression

Every torm on the right hand side of this exprossion is aither specified or calculable. Having obtained $T_{O_{0}}$, the vehicle acceleration (f) may be determined using equation F4.4 and hence the performance of the vehicle.

The tern (DAR $x G R / r_{r}$) in expreasion $F 4.6$ should be noted. This is a very common grouping in vehicle performance work.

An analysis of expression $F 4.6$ shows that, if the engine inertia and/or the engine acceleration is set at zero, the output torque from the torque converter is the steady state output torque, as one would expect. Also, if the slope of the output torque curve is earo, as it may be near the coupling point, $\Delta \mathrm{T}_{\mathrm{o}_{\mathrm{m}}}=0$ and there is no mismatch.

It follow, therefore, that given the result of a matching atudy between engine and torque converter, the performance of the vehicle may be calculated directly and in a straight forward manner without resort to iteration. This has been made possible because the match is fully described mathematically.

It is possible to procoed further and calculate the speed of the accelerating engine at a particular vehicle speed v_{o} Since $T_{o_{c}}$ is now known, the vehicle acceleration (f) is known, $\Delta T_{o_{1}}$ is known and the percentage change in output torque $\left(\Delta T_{O_{I}} / T_{O_{I}}=0\right.$) is known. Now the output shaft speed is related to the engine apeed for a particular point on the torque converter characteristics, that is for a particular speed ratio, as follows

$$
N_{O_{I}}=0 \stackrel{\ddot{O}}{ }=S^{N} \times{ }_{E_{I}}=0
$$

and $N_{O_{I}}=S R \times E_{E_{I}}$
The value of SR being common to both. It follows, therefore, that

$$
\Delta N_{0}=S R \times \Delta H_{E}
$$

and using equation F4.1, that

$$
\frac{\Delta \mathbb{N}_{0}}{N_{O I}=0}=\frac{\Delta N_{I}}{\mathbb{N}_{E_{I}}=0}=\frac{\Delta T_{O I}}{2 \cdot T_{O I}}=0
$$

This means that the percentage change in engine specd of a particular point in Fig. F4. 2 as a result of a drop in engine torque output equals the percentage change in output shaft speed. Pig. P4. 2 shows this very clearly. At high output shaft speeds, when the speed ratio approaches unity, the two curves marge into one whth a slope of 450. Actual values taken from PIg. F4. 2 confirm also that the percentage change is the same for both ongine speed and output shaft ppeed.

Fig. F4. 4 is a close-up of a portion of Fig. F4.2. The ongine speed corresponing to a particular output shaft specd (N_{0}) with an engine having no inertia is known (point A). It is required therefore, to find the engine apeed corrosponding to output shaft speed (N_{0}) when the ongine inertia is not zero (point C).

This is given by
 where the slope term is the slope of the lower curve at point B.

Appendix F4 shows that the olope of the upper curve at A is the same as that of the lowor curve at B. Using this and equation F4.8 produces

Again, every tera on the right hand side is known and no the apeed of an accelerating engine is calculable.

The assumption likely to cause the largest error in the calculation of the output torque is the use of ($\delta \mathrm{N}_{\mathrm{e}} / \delta \mathrm{N}_{0}$) at point B_{g} rather than at point C. Appendix F3 shous that this ascumption causes an arror in the time up to $90 \mathrm{mllo} / \mathrm{h}$. of a vehicle of less than 0.04%, a negligible amount. Nevartheless, the error is calculated at the ond of a step length and the next step length calculations are modified accordingly. The final error therefore, is likely to be very small indeed.

This section therefore lays down a rational theory to enable the output ohaft torque, the vehicle acceleration, the engine speed and ecceleration and hence the performance of the vehicle to be calculated in a straightforward manner.

SSCTION B5

Performance Propram - Automatio transmissions

Listed belou is the digital computer program (BO58) designed to calculate the parformance of a vehicle having an automatic transmission. The program accepts the resulte of the previous match study between engine and torque converter (BO71) and the vehicle design parameters, such as weight, position of the centre of gravity, wheel sizea, gear ratios etc. unlike the mamal transmission programs (BOO1 and BO33), the gear chenge speeds are read in as independent variables.

The layout of the main program is similar to B001. The input data is printed out for reference. From statement mamber 32 to the STOr card, the maxdmum horsepower in the torque converter output shaft, the speed at which it occurs and the maximum speed of the vehicle are evaluated in a manner similar to BOOl.

Staterent mamber $29+1$ down to statement number $53+5$ stores the coofficiente of two fourth order polynomale describing the torque absorbed by the flutd pumps. Storage spaces POMP (1) to FONP (5) are ascribed to the rear pump, FUMP (6) to POMP (10) to the front pump. To delete the raar purnp, read $\mathbb{C O M P}$ as zero.

The subroutine used to evaluate the time to speed integral
$t=\int_{V_{1}}^{v_{2}} \frac{1}{2} \cdot d V$
is called TIMA and is described as followa.
After aetting up the initial values of the variable quantities, the step length (DV) is chosen such that there are at least 25 steps in the integration. The main DO LOOP down to statement mamber 3 evaluates the vehicle acceleration at each step. DO LOOP down to statement number 4 and then down to staterent mumber 5 arranges the gear changes at the specified speeds. From there down to statement mumber $9+5$ the theory described in Section F4 is applied. The DO LOOP down to statement mumber 26 calculates the error in using $\left(\partial H_{R} / \partial H_{0}\right)_{B}$ instead of $\left(\partial H_{E} / \partial N_{0}\right)_{C}$ as described in Section F4. This error is stored and applied as a correction during the calculation of the next step length.

From there down to the end of the subroutino the oalculations are oimilar to those in subroutine T I ME (BOO1). The teat applied for wheel opin is identical and follows the theory laid dow in Part Be

There is one important difference in that the theory of take-off with an automatic transmission is more aimple than for a mamal transmission. It ia assumed that a test driver places one foot on the throttle pedal and the other on the brake pedal before a test. At the instant of time $t=0$, he takes his foot off the brake. Hencp there is no transition after $t=0$. The engine is already at its stall speed and is already connected to the transmission through. torque convertar. There is no clutch engagenent to worry about,

Table 85.1 gives a typical output from program B058. It represents the calculeted performance of Vehicle B fitted with a 225 K torque converter. The results of the matching study example in Section P3 were used. Tho layout of the time to speed table is very similar to that of BOO1 except that the engine speed is now 1isted, since it is not tied directly to vehicle speed.

Note that the performance of the autonatio version of Vehicle B is better than the ramal version up to about $25 \mathrm{mile} / \mathrm{h}$. and that thereafter it is poorer (see Table Bl2.2). The calculated madmum speed of the automatic version is lower, as one would expect. The gearbox assuned fitted to Vehicle B was the Borg-Warner 35.

Fig. F5.1 is a plot of the engine speed against time information given in Table F5.1. This shows the engine acceleration at take-off to bo low rising quite rapidiy to a near constant valuo in firat gear. This near constant engine accelearation towards the end of the first gear phase is the highest level of engine acceleration reached during the performance run, and is approximately $50 \mathrm{red} / \mathrm{s}^{2}$ for Vehicle B. Assuming an engine inertia of 0.15 slug ft^{2}, this represente an inertia torque of 7.5 lbf ft , or some 78 of maximun engine torque. This supporta the use of the assumptions in the mathematical procedure developed for dealing with engine inertia.

The second gear ongine acceleration is lower and Virtualif constant. The top gear engine acceleration decreases as the vehir approaches its maxdmun speed.

Lsting of Performance Program (Automatics)

B058

```
*FORTRAN BO58,
    G.G.LUCAS
    NO IRACE
    MASTER 2058
    DIMENSION ET(10),ES(10),TCT(10);X(10),GCS(10),PUMP(10)
    COMMON ET,ES,YCT,X,OCT,DAR,RR,AD,BD,AK,WV,W,AIW,AIE,KA,A,B,K,XK,NG
    1,NES,NTCT,NET,PI,VBS,GCS,TI,PUMP,D1,D2,D3:O4,D5
    PI=3.14.150265359
    20 CONTINUE
    16 CONTINUE
        J=25
        WRITE(2,100)
        READ(1,101)
        WRITE(2,101)
        WRITE(2,102)
    1 REAO(1,103)VET
    2 READ(1,104)(ET(I),I@I,NET),VBS,AIE
    WRITE(2,106)
    WRITE(2,12B)(ET(I),I=1,NET)
    WRITE(2,129)
    WRI#E(2,107)VBS,AIE
    WRITE(2,129)
    IF(J-2)26,25.0
    3 READ(1,103)VES
    4 READ(1,104)(ES(I),\E1,NES)
    WRITE(2,108)
    WRITE(2,128)(ES(I), I=1,NES)
    WRITE(2,129)
    1F(J-4)26,25,0
    5 READ(1,103)VTCT
    6 READ(1,104)(TCT(I),1m1,NTCT)
    WRITE(2.109)
    WRITE(2,12B)(TCT(I),IEI,NTCT)
    WRITE(2,129)
    IFiJ-6)26,25,0
    9 CONTINUE
    7 READ(1,103)VG,NPUMP
    10 CONTINUE
    8 READ(1,104)(X(I),Ia!,NG)
    WRITE(2,110)(X(I),I=1,NG)
    WRITE(2.129)
    IF(J-8)26,25,0
    READ(1,104)(GCS(I),I=1,NG-1)
    WRITE(2,111)(GCS(I),IEI,NG-1)
    WRITE(2,129)
    IF(J-1))26,26,0
    11 READ(1,104)OAR,RR,AIW,PSI,TI
    AIW=AIN+PSI*DAR由DAR
    IF(J-11)26,26,0
    12 READ(1,104)N,A,B,H,KA
    IF(J-12)26, 26,0
    13 READ(1,104)AD,BD,AK,XK
    XK=XK/1000000.
    IF(J-13)25,26,0
    14 READ(1,101):,CF,GCT
    IF(J-14)2G,26.0
```

```
15 READ(1,104)V1,V2,WV
    IF(J-15)26,26,27
27 CONTINJE
30 C:%":lliJe
```



```
    स户!(E(2,130)Y1
    WRITE(2,113)W,A,B,H
    WRITE(2,114)AD,BD,AK,G,CF,GCT
    WRITE(2,115)V1,V2,WV.
    IF(KA)0,2B, 2.8
    WRITE(2,116)
    GO 10 29
28 WRITE(2,117)
29 CONTINJE
    IF(NPUMP)(1,52,0
    PUMP(1)=1.64.595003
    PUMP(2)=-.933208837
    PUMP(3)=. 367206661
    PUMP(4)==.0565263932
    PUMP(5)=.003734402.72
    GO TO 53
5200 54 I=1,5
54 PUMP(1):0.
53 CONTINJE
    PUMP(6)=3.0%241256
    PUMP(7) =-1.444821983
    PUMP(8)=.910.72275
    PUMP(9) =^. 1738750́27
    PUMP(10)=.0110702038
    CCaSQRT(1.-5*G)
    C=B*CC+H*C
    BW:1.-C/CC/(A+B)
    IF(G-BN*CF*CC) 30,30,0
    WRITE(2,118)
3O CONTINUE
    IF(KA)31,0,0)
    C=B*CC-G*(H-RR)
    IF(rCY(1)*DAR*X({)-W*C) 31,0,0
    WRITE(2,119)
31 CONTINJE
    CALL TIMA (TS,VI,V2,G,CF)
    WRITE(2.102)
    WRITE(2,120)TS
    J=0
    R=ES(1)
32 CONTINUE
    IF(R-.S.GE.VBS/1000:.OR.R.LE.-.1) GO TO 3&
    DTD=TCT(1)
    OO 33 In2,NTCT
33 DTD=DTD*I*TCT(I)*R**(I-1)
    IF(J-1)0,0,34
    IF(DTO)34.0.0
    R=R+.S
    J=1
    GO TO 32
34 CONTINUE
    IF(J-10)0,0.35
    IF(OTO)0,0,35
    R=R-.05
    J=10
```

GO TO 3 ?
35 CONTINUE
IF(DTOI36,0.0
$R=R+. \cup 5$
$J=100$
GU TO 32
36 DTD=TCT(1)
DO $37 \quad i=2, N T C Y$

DTD=2.*PI*R*DTD/33.
RPM=R*1000.
WRITE(2,121IDTD,RPM
$V M=0$.
$J=0$
38 CONTINUE
$O F \equiv W *(A D+V M+B D)+A K * V M * V M$
$R X=R R *(1 .+X<*(V M * V M-900)$.
QGR=PI*15.*マX/660./DAR/X(NG)
IF (VM-11,-VQS*OGR)45,0,0
GRAU\#VBS*OGR
WRITE(2,122IGRAO
GO TO A6
45 CONTINUE
TEF=. $98 *(.92758-.0000875 * V M) *(.98-.000516 * V M=.0000058 * V M * V M)$.
$R=V M / O G R / 1000$.
$T=T C T(1)$
RPUMP=PUMP(1)
DO 39 IE2,NTCT
$39 T=T+T C T(1) * 2 * *(I-1)$
D $51 \quad 1=2,5$
51 RPUMP= $2 P$ IIMP + PUMP (I)*(R/X(NG))**(I-I)
$T=T-R P U M P$
TF=T*X(NG)*TEF*OAR/AX
IF (J-1) 0,0,10
IF (TF=DF) $41,0,0$
$V M=V M+10$.
$J=1$
GO 1038
40 CONTINUE
IF (DF-TF)42.43.44
41 CONTINUE
IF (VM) $45,0,14$
$V M=V M+10$.
GO 1038
$44 \quad V M=V M-1$.
$J=10$
GO TO 38
$42 V M z V M+.5$
43 CONIINUE
WRITE(2,123)VM
46 CONTINUE
V=RPM*UGR
GRADEVM/V
WRITE(2,124)GRAD
47 CONTINUE
$J=0$
READ(1,125).1
IF(J)43,48,)
WRITE(2,126)
WRITE(2.105)

```
    G% (0 11,3, \,4,5,5,7,8,9,17.11,12,13.14,15,151,J
48 WR1TE(2,127)
stop
10O FORMAT(2OX3&HG.G.LUCAS DEPT OF TRANSPORT TECHNOLOGY/2OX37HLOUGIABOR
        IOUGH UVIVERSITY OF TECHNOLOGY///IBX39HVEHICLE PERFORMANCE - AUTOMA
    2TIC GEARBOX//I
101 FORMAT(BOH
    l (:)
102 FORMAT(1HO/1)
103 FORMAT(1010)
104 FORMAT(20F0.0)
105 FORMAT(1HI)/5K7HNEW RUN//)
106 FORMAT(GRH ENGINE TORQUE LBF FT = POLY((ENGINE SPEED)/I000) COEF
        IFICIENTS ARE,
107 FORMATI34H YAXIMUM ALLOWABLE ENGINE SPEED a Fg.1,9H REV/MIN/2OH E
        INGINE INERTIA SLUG SQFT = F8.4%)
108 FORMATIS8H ENGINE SPEEO/1000 = POLY((TC OUYPUT SPEEDI/1000) COEF
        IFICIENTS ARE:)
109 FORMAT(73H TC OUTPUT TORQUE LBF FT = POLY((TC OUTPUT SPEED)/1000
        1 COEFFICIENTS ARE)
110 FORMAT(16.4 3EAR RATIOS ARE/1X5G17.8)
111 FORMAT(42H SPECIFIEO GEAR CHANGE SPEEDS (MILE/H) ARE/1X5G17.G)
112 FORMAT(2OH DRIVE AXLE RATIO = FIO.5,5\24MROLLING RADIUS (FEET) a F
        19.5/40H TOTAL ROAD WHEEL INERYIA (SLUG SQFT) E FIO.5.5X2INTYRE GRO
        2WTH FACTOR E:F14.10/1
113 FORMATI15W VEHICLE WT LBF2OX3GHPOSITION OF CENTRE OF GRAVITY (FEET
        1)/F12.1,25\times3F10.3/1)
114 FORMATI3OH VEHICLE DRAG COEFFICIENTS ARE3FIO.5//IOH. SPECIFIED GRAD
        IIENTIOX23HCJEFFICIENT OF FRICTIONIOX22HGEAR CHANGE TIME.(SEC)/3(FI
        29.6,12(1/)
115 FORMAT(3IH INITIAL PEST SPEED (MILE/H) = F9.2/29H FINAL TEST SPEED
        1 (MILE/H) = F1O.2/23H WIND SPEED (MILE/H) =FQ.2/I)
116 FORMAT(30\times2gHFRONT WHEEL DRIVE VEHICLE//)
117 FORMAT(30\times23HREAR WHEEL DRIVE VEHICLE//)
118. FORMAT(2OXGIH* * * VEHICLE MAY SLIP DOWNHILL WIYH HANDBRAKE ONLY S
    1ET * * *//)
119 GORMAT(2OY4GH* * VEHICLE MAY OVERTURN IN FIRST GEAR * * */l)
120 FORMAT(IOX43MTIME TO SPEED ON SPECIFIED GRADIENT (SECONDS) = F12.4
    1//)
121 FGRMATI37H YAXIMUM BHP FRDM TORQUE CONVERTER a FII.3.34H AT TC OU
    ITPUT SPEED (REV/M(N) OF Fi2.?.//)
122 FORMAT(53H ENGINE MAXIMUM SPEED LIMITS MAXIMUM vEmICLE SPEED TOFIO
    1.2,8H MILE/H/)
123 FORMAT(34H NAXIMUM VEHICLE SPEED (MILE/H) E FIO.21)
124 FORMAT(?GH DEGREE OF UNDERGEARING a F10.5/)
125 FORMAT(I2)
126 FORMAY(IH1)
:27 FORMAT(1OXIOHEND OF CALCULATIONS)
128 FORMAT(1)5617.8)
129 FORMAT(1HO)
130 FORMAT(3OH TURBINE INERTIA SLUG SQ.FT = F9.4/)
    END
```

SUBROUTINE TIMA (TS,V1,V2,G,CF)
DIMENSION ET(10),ES(10),TCT(10),X(10),GCS(10), DS(6), AZ(6), PUMP(10)
COMMON ET, ES,TCT, Y,GCT, DAR,RR, AD, BD, AK,WVIW,AIW,AIE,KA,A,B,H,XK,NG 1,NES,NTCT,NET,PI,VBS,GCS,TI,PUMP,D1,D2,D3,04,D5
DATA
DS(1), DS(2);DS(
13), DS(4.), OS(5)/1320.,1640.423.2640., 3280.846,5280.1.AZ(1),AZ(2),AZ

2(3),AZ(4),AY(5)/ZHI/4 MILE, 8HI/2 KILO, 8HI/2 MILE,BHI.KILO./8H I
3MILE/
DVE2.
NGEAR=1
NDISel
$\triangle A 1=0$.
$F=0$.
$T S L=0$.
DISFL=0.
GY=0.
OISF=0.
TSEU.
CDEDR=0.
GCS(NG)¥V2*1.2
$V=V 1$
CC=SQRT(1.-G*G)
$B W=C F * W /(A+B)$
IF(KA) 0,13,13
$A B=B$
$H H=-H$
GOTO 14
13 CONTINUE.
$A B=A$
$\mathrm{HH}=\mathrm{H}$
$14 C=A B * C C+H W * O$
WRITE(2.100)
2. CONTINUE

IF ((V2-V1)/OV-25.10.1.1
DV=DV/2.
GO TO 2
1 CONTINUE
$K V=(V 2-V 1) / O V+1$.
DO. $3 \mathrm{KK}=1, K V$
$R X=R R *(1,+X K *(V * V=800)$.
$V W V=A B S(V+W V)$
$D F=W *(G+A D+V * B D)+A K *(V * W V) * V W V$
$A N=0$.
$G R=X(1)$
DO 4 1z2,NG
IF(V.GE.GCS(I-I).AND.V.LT.GCS(I)).GREX(I)
4 CONTINUE
IF (GY) 0,5,0
IF(GY-GR)O, 5,0
$A N=G C T$
NGEARaNGEAR+1
WRI:E(2,101)GR,GY
5 GYEGR
TYZ=OAR*GR/QX
$O G R=P I \neq 15,1660.1 T Y Z$
IF(V-GCS(1))0,24,24
AI $=N G=1$
GO 1023
24
CON:INUE

```
    OO 2% 1=?,NA
    IF(V.GE.GCS(I-1).AND.V.L.T.GCS(1)) AlaNG-I
22 CONTINJE
23 CONTINUE
    TEF=.98*(.95-.000315*V*.0000058*V*V)*(.99758*(1.*.007*A1)-.0000879
    1*V*2.C8**AI)
    EM=W/32.2+AIW/RR/RR+TI|TEF*(GE由DAR/RX)**2
    R=V/OG2/1000.
    T=TCT(1)
    OTCDR=0.
    RPUMP=PUMP(1)
    1F(R)0,0,25
    DTCOR=TCT(2)
    GO ro 17
25 CONTINUE
    DO 6 la2,NTET
    DTCORvOTCOR+(I-1)*TCT(I)*R**(I*2)
    6 T=T+TCT(J)&Q**(I-1)
    OO 20 I=2,5
20 RPUMP=RPUMP+PUMP(I)*(R/GR)**(I*|)
17 CONTINUE
    T=T-RPUMP
    ERचES(1)
    OERDR=0.
    IF(R)0,0,18
    DEROR#ES(2)
    GO YO 19
18 CONTINUE
    OO 7 I|2,NES
    DEROR=DEROR*(1-1)*ES(I)由R**(I-2)
    7 ER=ER+ES(I)*R**(I-1)
19 CONTINUE
    IF(ER~V8S/1000,18,8,0
    WRITE(2,102)VBS,V,TS
    GO TO 15
    8 CONTINUE
    FPUMP=PUMP(5.)
    DO 21 1a7,10
21 FPUMP&FPUMP&PUMP(1)&ER**(I-6)
    TE=ET(1)
    DO 9 Im2,NET
    9 TE=TE+ET(I)由ER**(I-1)
    TE=TE-FPUMP
    TZ=AIE*(DEROR+CDEDR)/TE
    TQ=-DTCDR*R/2.+T
    TA@(T/TQ+OF*TYZ*TZ/EM)/(TZ*TEF*TYZ*TYZ/EM*1./TO)
    TBa(1.+DF*TYZ*TZ/EM.)/(TZ*TEF由TYZ*TY-Z/EM+1气/T)
    DN=(T-YB)/2./T
    ER=ER*(1.-DV)+DERDR*R*DN
    DNOX=ES(2)
    DO 26 I=3,NES
26 ONDX=DNOX +(I-1)*ES(I)*(R*(1.*DN))**(I-2)
    CDEDR=DNDX-DEADR
    T=TA
    TFET*TEF*TYZ
    PF=TF-DF
    IF(PF)0,0,10
    WRITE(2,103)TS
    RETURN
10 CONTINUE
```

```
    F=PF/EM
    TFF=BH*(C+H#*F/32.2)
    FMAX=(BN*(AB*CC+HH*G)-DF*W/2.*(AD+V*8O))/(W/32.2+AIW/2./RR/RR-BW*H
    1H/32.2)
    IF(F-FMAX)11.11.0
    WRITE(2,104)
    F=FMAX
    PF=F&EM
    TF=PF+DF
11 CONTINUE
    AA2=(AA1+DV*22./15./F)/2.
    IF(V-V1)12,12,0
    TS=TS+AA2+AN
12 CONTINUE
    AA1=OV*22./15./F
    VSuV*22./15.
    ER=ER*1000.
    RF=1./F
    IF(V-VI)O,27.0
    DISFmD!SF+(V-OV/2.)*22./15.*(AA2+AN)
27 CONTINUE
    IF(NDIS-6)0.15,15
    IF(DISF-DS(NDIS))15,0,0
    DD=(DISF-OS(NDIS))/(DISF-DISFL)
    TSD=TS-DO*(TS-TSL)
    VD=V-DD*DV
    WRITE(2,107)
    WRIIE(2.106)AZ(NOIS),VD,TSD
    WRI`゙E(2,107)
    NOIS=NDIS+1
15 CONTINUE
    DISFL=OISF
    TSL=TS
    WRITE(2,105)V,F,RF,VS,DF,NGEAR,TS,DISF,TF,PF,ER
    3 V=V+DV
16 CONTINUE
    RETURN
100 FORMAT(INO/130X46H* * TABLE OP TIME TO SPEED CALCULATION * * *//
    1113H SPEED ACCEL I/ACCEL SPEED ORAG OEAR FIME
    2OISTANCE TRACT, AND PROPUL. FORCE ENGINE SPEED/9IM MPH FT/
    3SEC2 SEC2/FT FT/SEC LBF. NO. SEC FEET LR
    4F LBFI3X7HREV/MIN/)
IOI FORMAT(IHO2OX23H* GEAR CHANGE* *IOXI4HRATIO ISNOW FIO.4.I
    13H IT WAS F1O.4/)
102 FORMAT(IHOIOX3IHENGINE SPEED ABOVE MAXIMUM.OF P9.1.9H REV/MIN/5Y
    123HVEHICLE SPEED MILE/H = F9.2,1OY15HTIME SO FAR IS FiO.3.3HSEC/I
103 FORMAT(IHO/25X22HSET SPEEO UNOBTAINABLE//5X2OHTIME SO FAR SEC.g.
    1F12.3/)
104 FORMAT(1HO35\times22H* * WHEEL SPIN * * */)
105 FORMAT(2F7,2,F11,5,F8.2,F10.2.15,F1O.3,2F11.2.F13,2,F18.1)
106 FORMAT(1OX,A8,21H MARK PASSED SPEED EF8.2.3IH MILE/H, TIME APF
    1ROX. SEC mFiO.2)
107 FORMAT(1HO)
        ENO
```

END OF SEGMENT, LENGYH 961, NAME TIMA

SECPIOA 6

Investigation

Tho investigation into parametric changes with automatics is not covered as extensively as with the mamal gearbox in Part C. There are tigee main reasons for this. Two firet is that many of the conclusions of Part C anply in broad outline to automatice also. The second is that the torque converter introduces a new dimension which extende the range of the parameters to be investigated quite considarably. The third reason is that, since the theory outlined in Soction F contains a large proportion of now and original material, It was Pelt that the emphasis should be on the results of the theory:

The flrat point to be stualed is the growing practice of deleting the rear fluid puap from the Borg-Warner 35 gearbox. This pump supplies flutd to the control systed whithin the gearbox as a supplement to the front pump. The particular and special function of the rear pupp is to supply the control systen when the engine is otationary. Thus it is possible to "prashestant" a car fitted with 2. Borg-Harner 35 having a rear puap. A usoful facility when the battery is flat or the starter systen defective.

Repeating the performance calculations on Vehicle B, this time with the rear pump deloted results in Fig. F6.l. This shows the
percentage gain in the time to apeed against vehicle speed to be less than 1% for the important low speed end of the range and a low parcentage gain at the high speed ond. Certainly it is difficult to justify the renoval of the rear pump on perform ance grounds, although doubtless it may be justified by econonic considerations. Some provision should be made for atarting a car in an energoncy and it should be noted that a starting handle is not always successful or desirable when used with an engine having a torque converter.

The nexit investigation in this Section concerns a particular engine, having the full throttle torque curve shown in Fig. P6.2, fitted uith several torque converters.

Torque converter cas/1A has a relatively high R-factor and a low torque ratio at stall. Conversely, SSIL has a Low K-factor and a high torque ratio. It had boen intended to use $G 7 / 1 \mathrm{~A}$ as a third torque converter aince it has a stall k-factor about identical to SSII and a stall torque ratio about identical to $G 8 / 14$. However, It was considered more fruitful to use a composite torque converter having the actual K-factor characteristics of the SSII and the torque ratio characteristics of the $68 / 1 A$. It may well be that it is not possible to mamifacturer such a torque converter, but the use of this hybrid does enable certain concluaions to be drawn. The torqu converter characteristics are shown in Fig. F6.3.

Matching each of the torque converters in turn to the engine using program BO71 produces the steady running output torque curves shown in Fig. P6.4, and the engine speed against output shaft apeed curves of Fig. P6.5.

The latter set of curves confirms that the steady running engine speed curve is linked to the torque converter K-factor and is not affected by the torque ratio characteristic. The engine speed for the composite torque converter is identical to that of the SSIl. A low atall K-factor resulting in a low engine speed at stall.

The engine speed curve for the G8/14 rises steadily up to the coupling point after which it is nearly straight at a alope of 45° approxdmately. The engine speed curve for the SSIl and the composite torque converter remains almost constant until just before the coupling point. It then steepens considerably to form the near unity speed ratio after coupling. This "dwell" in the curve is a direct result of a flat torque converter K-factor characteristic. Because,

$$
\sqrt{\mathbb{N}_{\mathrm{T}}} \simeq \text { constant }
$$

and hence $\mathbb{N}_{\mathrm{E}} \sim$ constant at lou valies of torque converter speed ratio.

Considering now the torque curves in Fig. F6.4. The curves for the G8/1A and the SSIl are as expected. The high atall torque of the SSLI and its low coupling speed are in evidence. The composite torque converter however, shows that the output torque is a function of both torque ratio and E-factor. At low apeed ratios, the torque curve follows closely the G8/1A but, as the coupling point is approached, it ie seen to follow the SSII torque cirve. The conclusion is therefore, that the stell torque is governed almost exclusively by the torque ratio but that at the coupling point, the output torque is determined by the K-factor characteristic. Furthermore, the output speed at coupling is shown to be largely a function of the K-factor charactariatic. This is shown by the small change In output shaft speed at coupling between the SSIl and the composite curves in Fig. F6.4.

The difference in the effects of the three torque converters upon vehicle performance is small. Table F6. 1 summarises the results of using the Vehicle performance program B058 as a means of comparing the performance of the three torque converters. The vehicle weight used was 2799 lbf, drive axie ratio 3.538 in conjunction with the Borg-Warner 35 automatic gearbox having ratios 2.39, 1.45 and 1.00. This Table shows that all three torque converters result in wheel-spin at take-off, but that the SSIl wheel-spin persists a little longer than that of the other two. This is a direct result
of the high torque ratio at stall. The coefficiont of friction between tyre and road was taken as 1.0 in all three cases.

Torque converter C8/1A produces the best time to speed, followed by the composite torque converter. The differences, however, are guite small.

The engine speed with the composite is slightly different to that with the SS.21, particularly in regions of high ongine acceleration. However, this difference is small. The engine speed with the G8/1a is higher, particularly at takeoff.

A study of Table F6.1 in conjunction with Fig. P6.5 reveale that the coupling point is reached at $19 \mathrm{mile} / \mathrm{h}$. in first gear with the composite torque converter and that the engine speed is above the coupling point in second and top. Joing SSII results in a similar coupling point at $17 \mathrm{mile} / \mathrm{h}$. In first gear only. With $68 / 1 \mathrm{~A}$ the vehicle speed at the coupling point is high at $25 \mathrm{mile} / \mathrm{h}$. in first, $42 \mathrm{mile} / \mathrm{h}$. In second and $60 \mathrm{mile} / \mathrm{h}$. in top. The efficiency of the G8/IA therefore, is lower at the lower vehicle speeds than the othor two torque converters.

It must be appreciated that the performance ariterion playe a small part only in the choice of a torque convarter. Considerations of noise and of Sengine "fussiness" are more important. Nevertheless the performance calculations ahould be performed.

The matching study theory is well known. Uaiag polynomial curve fits in order to effect a match uith a digital compater :joes not detract frum the accuracy of a match. It is now desirable therefore, to study the accuracy of the new theory. This uses the polynomial curve fits to calculate the effect of engine inertia upon a match and to make due allowance in vehicle performance calculations. The new theory makes two corrections. The first is to deduct the inertia torque from the engine torque and to calculate its effect at the torque converter output shaft without change in match. The second is to recognise that a drop in engine torque level must result in a change in the match betveen engine and torque converter and to correct accordingly.

The accuracy of these two corrections may be assessed individually as follows. First, by setting engine inertia $I_{\theta}=0$ causing no drop In the steady state ongine forque and no mis match. Hence the accuracy of the two corrections combined may be assessed. Secondly, by setting $\partial T_{\sigma} / \partial N_{0}=0$, thus assuming no mis match only.

Fig. F6. 6 shows the calculated percentage change in time to speed and engine speed of vehicle B fitted with a 225 K torque converter as a result of setting the engine inertia at zero. This suggests an error of some 8% in the time up to the mid-speed range. This error decreasea considerably as maximum vehicle specd is approached. The error in engine speed is about $\%$ at 10 apeed decreasing rapidly to a negligible error.

Hence, making no allowance whatever for engine inertia and talding the steady state output torque from the match study without modification, results in quite a small error in the time to speed. The error is less than that incurred by an uncealiatio assumption: regarding transmission efficiency.

Setting the slope of the output torque curve at zero and repeating the performance calculations results in Fig. P6.7. This shows that making no allowance for the mis match caused by the engine inertia torque produces very little arror in the time to speed. The maxdmum error is only 0.2%.

Fig. F4.4 in Section P4 shows that the calculated engine speed is lower if no allowance is made for the mis match. Fig. F6.7 suggests that this error is 58 approximately at the ond of the first gear range. 'The error decreases raphdy as vehicle speed increases.

Since the nev theory makes ample proviaion for both engine inertia itself and the change in the match between engine and torque converter caused by engine inertia, it may be used with confidence for vehicle performance calculations.

Finally, it should be mentioned that no comparison between calculated and test performance has been made for flve reasons.

1) few automatics are tested by the semi-technical press.
2) part B, Appendix B8 shows dyecrepancies in the tests carried out by the aemi-technical press.
3) the Department of Pransport Technology, Univergity of Technology, Loughborough, has not yet developed the instrumentation in order to carry out performance teste.
4) the automatic version of Vehicle B has been teated by one of the Motoring magazines, but it is apparent that the takemofe procedure is different to the more obvious technique assumed in the theory. That is of depressing both throttle pedal and brake pedal and releasing the brake at $t=0$. Hence, no real comparison is possible.
5) It must be confessed that the expression used for transmission efficiency in the performance danellations of automatics is simply 98% of that used for mamal transmiseions. The 98% has been inserted into the expression in ordar to take some account of the higher 011 churning losses in the automatic gearbox. It has no experimental backing.

In the absence of any experimental evidence, the assumptiona regarding transmission effialency seem reasonable. But Fig. P6.8, a plot of time to speed of vehicie B assuming 200% transmission efficiency in comparison with the efriciency given above, emphasises the importance of transmasion officiency in these calculations. The maxdman speed of Vehicle B assuming 100%
transmission efficiency is $102.5 \mathrm{mile} / \mathrm{h}$. compared with $97.5 \mathrm{mile} / \mathrm{h}$. assuming 988 of the mamal transmission efficiency. The decrease in time to speed may be as much as 30%.

This, therefore, endorses the conclusion reached in connection with mamal transmissions, that research efforts mast be channelled into evolving a satisfactory expression for transmisaion efficiency in order to increase the accuracy of performance calculations.

SECTION ET

Conolusiona

2) The match between an engine and a torque converter may be described adequately using polynomials.
3) This match otudy is best conducted separately from the main vehicle performanoe calculations.
4) Performance itself is a criterion in choosing a torque converter for a particular engine, alboit, not a very important criterion. Considerations of noise and engine speed are more impostant. The matching program BO77 is capable of gielding engino apeed data. In this connection, it may be of advantage to repeat the match study at differing throttie angles throughout the engine load range. This endorses conclusion (2) above.
5) The results of the ateady state matching study may be used in vehicle performance calculations in conjunction with the theory developed to allow for engine inertia. The theory is proved and is adequate.
6) A full parametric study of vehicle performance is possible with the minimu of computation. This is because a separate vehicle performance program (BO58) is used which accepte to

results of a previous match study between engine and torque converter. The new theory avoids the necessity of repeating this antich study.

6) Research is required in order to provide an accurato expression for transwission officienoy.

PABP 0

Future worls and References

SECPTON 6

Future Worts

a) Transmisaion efficioncy

It is thought that the greatest barrier to more accurate vehicle performance calculations is the lack of knowledge on transaission efficiency. It is not surprising that this lack exdsts because the efficiency of a transmisaion is difficult to measure. One is faced with the measurement of a small difference between large quantities.

The bssic expression used throughout this work looks reasonable, but its foundations are shakg. It is shown in Section F6, Fig. F6.8, that a small change in the expression for transmisaion efficiency has a marked effect on the calculated time-to-speed of a high parformance automatic transmissioned car. Flg. G. 11 shows the corresponding curves for the mamal version of vehicle B, while Fige. G2. 2 and 61.3 show the curves for a low performance van (vehicle A) and for a commercial vehicle (the Midland Red Coach), respectively. These curves emphasize the importance of the need for an accurate expression for transmission efficiency in vehicle performance calculationg.

It is thought that separate expressions should be sought for gearboxes and drive-axles and that these should cover both motor cars and commercial vehicles with, and without, automatic transmissions.

Such expressions should be more than a simple function of speed and gear number, as has been used throughout this work. It should at least be of the form

$$
\begin{aligned}
& \eta_{T}=\eta_{T}(1 \text { nput speed, input torque, gear ratio } \\
& \text { and fiscoaity of the 011) }
\end{aligned}
$$

Until this work has been done, it is not worth worrying too much about proving tests to establish the accuracy or otherwise of the performance programs except in so far as the comparison between road tests and theory could be used to provide information on the transmission officioncy. Embelliehments to the computer programs to include the offecto of the change in the reaction forces at the wheels due to aerodynamic lift and pitching moment or the refinemente of Slibsr and Desoyer (55) cannot yot be considered. Their incluaion would be meaningless at this stage.

Some work has been done already in the Department of Transport Technology, Loughborough Umareity to measure gearbox transmission efficiency uaing a "four-square" or "back-tomack" rig (118). This has been hampered by the lack of accurath torque neasuring devices. It is proposed to contime this work and to extend the field to cover other types of transmission.

b) Vehicle instrunentation

Work is to contime on the development of the two aygtems exployed by the Department of Transport Technology, Loughborough Onfiversity of Technology. On is a "pifth wheell device of the digital type. The other works on the Dobbler Radar principle and consiats of a small torch-like device which clips onto the front of a vehicle and shines obliquely down at the road. The immediate task is to use the deceleration teat to develop the technique and the data handling of these methode. The long term aim is to employ these methods for measurement of vehicle speed during road testa, particularly the difficult condition of braking.

c) Allowance for Ambient conditions

Part C shows that wind speed, ambient pressure and temperature and undar bonnet temperature can have a signeficant effect on vehicle performance. It is proposes to use the vehicle performance computer programs to develop a technique to correct the results of vehicle performance tests in much the same sort of way that engine test-bed results are corrected for ambient conditions.

It is thought that this can bast be done by using the computer programs developed in this thesis for a range of vehicle typea, rather than wholly by actual rehicle tests. This would avoid spurious results. The developed correction procedures must, however, be subjected to practical test before they can be accepted.

Similarly, it is proposed to extend the work of Part E to consider the efrect of ambieat conditions on the fuel consumption of vehicles. It may be that this work cannot be complete before a mathematical model is developed describing the ongine characteristics.

d) Enctine

Work is in hand to develop a data handiang system for engine test bed work. Thia factility is in an advanced atage of development and will afford ongine torque, engine speed, air flow rate and fuel flow rate reedings on paper tape. This means therefore, that nany readings can be taken and a digital computer used to process and plot out the engine characteristics. It is boped to use this facility to investigate the effect of a emall engine acceleration on the torque output curve by elowly running the onging up through its speed range and by logging torque and speed continuously. Also, it is hoped to study in more detail the offect of oil temperature on the torque output curve.

Effort mast be directed to providing a mathematical nodel of typical engine characteristics. It is thought that this will prove a vary usoful tool in the effect of parametars, such as engine size, engine type, engine modifications, ambient conditions etc, on vehicle fuel consumption. Coupled uith this, it is proposed to study procedures for the use of nondimensional paramoters to desaribe the engine.

Part E thows that reducing the aerodynamic drag coofficient of a vehicle can have a significant offect on fuel consumption and points to the engine cooling system as an obvious and unwarranted
source of drag. Attontion must be paid therofore to a ducted cooling system as a means to reduce or olimnate this drag.

Other work, which nay not be conducted at Loughborough, should be directed into devices to improve the characteristics of gas turbine engines, since Part E shows that they have a future with very large commercial vehiches which could bo extended to small vohicles.

Part E shows also that work should be directed to the develop ment of a otratified charge ongine, or to e quiet, light weight, compression ignition engine for use in motor cars.
-) Drag

Thare is evidence that a second order polynomial expreasion nay not be aufficient to describe the drag of a motor vehicle. It is shown in Part B that it is an approxiantion only to describe the rolling resiatance by a constant term or by an expression lina3r with vahicle volocity. Further, by treating the aorodynamio drag as though it were all normal presaure drag, introducea nome small error. It is proposed to otudy other possible drag expreasions, say, higher order polynomiels, uoing the deceleration test and vehicle instrumentation developed at Loughborough.

Detailed work on rolling resistance is being conducted by the tyre manufacturess and others. It is expected that this, uaing tyre rigs such as that described by Seld et al (95), wall lead to the need to defina minch nore olosely the tara "rolling resiatancen. Porhaps on the 11 nes suggested by SLibar and Desoyar (55). The most pressing aspect of this work, from the point of vien of vehicle performance calculations, is the offoct of torque transmiseion through the tyre on the somcalled rolling resistance. The time is approaching when this mast be included in any calculation technique, particulariy for conditions other than the "full throttle" condition.

An investigation should be conducted into the Dunlop expression for tyre growth. Uaing the Slibar and Desoyer very fundamentel approach, such an expression becomes unnecessary. It being replaced
by the atiffness coofficient otc. Section $C 3$ shows the offect of tyre grouth to be very small, but the dependence of the Dunlop formula on the datum speod of 30 mile/h appears arbitrary and artificial. This caused some small difficulties in Section $C 3$ (aee Fig. C3.2). Pogosbekov (68) shows that the change of the rolling radius of a tyre with apeed is inevitably tied up with slip. For the sake of completeness therefore, this matter; togethor with the affect of torque transmission, should be reviewed.

f) Vehicle takempr

The nechanian of torque transmission through a slipping alutch during take-off, whel-spin and hill starts is not fully understood. This matter requares closer study backed by experimental measurements. Such a study should gield a better technique for the calculation of vehicle performance curcing olutch slip. Howevery ouch a study is desiratie and opportune in its own right becanse the time taken for a vehicie to cover a short distance in the initial stages of a full throttle acceleration run is likoly to become an important parformance paramoter. Such a parameter is used by Setz (78) and should increase In prominence as traffic donsity increases and speed 1imits decrease. The omphais in this country scems to be moving quite rapidly from masdmum speed to "nippiness".
B) 0ff-the-sond-rehicles

This aspect of vehicle performance calculations appears to be too apecialised for anf general treatment. Others (Reece; Bekiser otc) are conducting detailed studies into the effect of plastic ground on vehicle drag. It is proposed therefore, to keep abreast of now work in the siold and, possibly, to seek to investigate the performance of a particular type or class of vehicle under contruct.

h) Effect of trangienta on Ael consumption

The prediction of steady-state fual consumption is reasonsbly clear and stradghtforward. Some work is required to Padiltate parametric etudies (see Sub-section d) above). The problea now arises on how to use the steadymatate fuel consumption to give the fuel consumption roturnad by a particular driver over a particular route. This could be achieved approxdmately by uaing the "centre of oparation" technique adyocated by Dr. Giles (6i), but it is thought that a mach aloser individual study should first be made into effects of the fuel injeotion/carburation syoten, driver technique, terrain and vehicle weight. Section 35 eluggests that this latter point, veisicle weight, may have considerable offect and, therefore, should not be ignored.

1) Automatics

Since the developsent of hydrostatic transmission systems will contimue and may soon become a reallty, work should comence on alassifying the types of hydrostatic systems and on designding suitable vehicle parformance calculating techniques. It is expected that ouch techniques will employ the vorks of Macnillan (92), ott (42), White and Christie (86), Ishihara and Emori (85) and Macrallan and Davies (91).

The technique of torque converter deaign outlined in thds thesis ard published elsewhere (44) may be improved by reference to the results of rig tests. It is thought that sore attempt should be mado to base dosign calculations on a realistic three dimenaional flow through the torque converter, rather than assuning a "mean path" flow.

Aiso, on the subject of torque convertera, worls is required on the study of the "over-wun" condition, when the vehicle drivos the engine through the torque converter. As far as is known, no ettempt is mado to predict the behavicur of the torque converter in this condition. THe torque converter design is modifled if it is found unsuitable in the ovar-quan conoition during dovelopnent. A realistic theory, which could be an extension of the work of Lucas and Rayner (4), would enable a better optimisation of the torque convertar design to be made at the design stage. Experience has shown that to attempt to avoid this condition, ty providing a freowheel between engine and transmission which "1ocks-up" on over-run, does not afford a aatiafactory solution. The large change in engine apeed between the over-run and the subsequent normal drive condition is generally unacceptable.

List of Reforencer

1.	Greene, A.B. and Lucas G.G. 1969. "The Teating of Internal Combuation Engines" English Univ. Press.
2.	Anon. 2967. Autarotive Design Engineering". Jamury issue. p44 Tyre rolling resistance.
3.	Hallling, J and Brothara, R.G. 1964. "Automotive Design Engineering". 2 Dec. p69. Mechanics of the rolling wheol.
4.	Taborek, J.J. 1957. MResistance Forces". 8 august p101. "Erachine Design". Also May 30, Juig 15, Sept. 19, Oct. 17 and Dec. 26 1957.
5.	Little, L.F. 1964-5. Earth-Moving Machinary Symposium proceedings. I.Mecil.E. Vol. 179 Pt.3F. Paper 4 Hiechanice of Earthmoving Vehicles".
6.	Bekker, M.G. 1960. Off-themroad locomotion. Ondveraity of Michigan Prese, ann arbur, Kichigan.
7.	Reece, A.R. 1964. J. Inst. Br. agric. Engrs. Vol. 20 (No. 2) "Theory and practice of off-tho-road locomotion".
8.	Payns, P.C.J., Tannar, D.W., and Spoor, G. 1964 , 5 Eorth-moving cachinery syeposium proceodinge. I.Mech.Engrs. Vol. 179 Pt. $3 F$ paper 1 M review of the relevanse of soil mechanics in earth-moving".
9.	White, R.G.S. 1962-66. an experimental gurvay of vehicle aerodynamic characteriotics. Report llos. 1962/1, 2964/4, 1965/13, 1966/10 and 2967/11. M.I.R.A. Linileg Larks. (theas reports are confidential to staffe of nembers of M.I.R.A.)

10.	"Autscar Rood Te3ts", Spring 1964, mp 85-92 11iffo.
11.	"Autocar Road Tosts", Spring 1963, pp 509, Ilife.
12.	"Car Supplement - small estato cars", Jannary 1963 published by Consumers' Association.
13.	"Gar supplemont", October 1964, rublished by Consumers' Association.
24.	Lav1, A and Vogl, T.P. (Bditors) 1965 Miscent Advances in Optimization Techniquos", John Viloy \& Sons.
15.	Hilde, D.J. 1964. "Optimum seeking Methods", PrenticeHali, INC. Englewood Cliffa, HoJ.
16.	Davidon, W.C. 1959. "Variable Matric Mathod for Mimimization ${ }^{\text {M }}$ Argonne Natl. Lab. ANL-5990 Rev., Univ. of Chicago. 22 pp.
17.	Booth, A.D. 1957. akumerical Mothodan, Buttervorthy, London.
18.	8torey, C. 1962. "Application of a Hill-climbing Method of Optimeation", Chom. Engrg. Sci XVIL 45-52.
19.	Roaenbrock, H.H. 1960. "An Automatic Mothod for finding the greatest or least value of a Function. The Computer J.3, 175-184.
20.	Powell, M.J.D. 1964, an efficient method for Pizding the minimum of a function of several variables without colculating derivatieres". The computer J 7, 155-162.
21.	Motor" Road Test No. 43/61. The Motor Road Tests 1962 odition. Tample Press Book Litd. London 1962.

22.	Motor" Extended Road Test No. 39/63. p 50. Motor Road Tosts. 1964. Temple Press Booke Litd. Iondon $1964{ }^{\circ}$
	-
23.	"Car Supploment" July 1962 publisised by Consumers' Association.
24.	White, R.G.8. and Carr, G.H. 1967. Mnstranentation and Toat rechniques for Hotor Vehicles". I.Meck. E. procetings of a symposium hold fointiy whth the Advanced school of Automobile Enginearing, Cranfield. paper 8 antitled "Aorodynamic tecting of vehicles at M.I.R.A.".
25.	Pearson, J. 1961-62. nDesign and operstion of Motorway Coaches". Proc. of the Auto. Div. of the Jnst. of Mach. Enginears. No. 7.
26. ..	Hoarner, S.F. 2958. "Pluidmpmanic Drag" published by, and for sale only by mall ordar directly from the author, S.F. Hoerner at 148, Buatasd Drive, Midland Park, Nsu Jersey.
27.	urechnical Data.for Avon tyres". Advertisement in the form of a book mariz in Automobile Engineers Reference Book.
28.	The Autocar Road Tests, Spring 1960, pp 9-12, Ilsfe.
29.	The Motor Boad Testis, 1963 series, Temple Press Itd.
30.	Autocap fioad reste, Autumi 1963, ILiffe.
31.	Autocar Road Teate, Autum 1967. Iliffe.
32.	Motor Road Tests, 2967 edition, Temple Ptess Ltd.
33.	Autocar hoad Peste, Spring 2966, Iliffe.

34. Autocar Road Teste, antum 1966, Iliffe.
35. Motor Road Tests, 1966 eaition, Touple Fress Itd.
36. Kotor Road Tests, 1960 edition, Temple Press Ltd. pp 14-17.
37. Howard. G.P. 1967. Assistant Technical Editor, "Autocar" Private Comemalcation.
38. Rayner A. 1966. Porformance of Vehicles ehort course notes available in the Dept. of Transport Tech. Lorghborough Univaraity of Technology.
39. Giles. J.G. 1961. "Automatic and Fluid franamissions" Odhans Press Ltd.

40 Mitchell. 6. 1966. Performance of Vehicles short course notes avallable in the Dept. of Transport Tech. Loughborough University of Technology.
42. Stubbs. P. Juno 1968. Private Conanuication.

42 Ott. A. June 1966. "Caloulation of Driving Performance whith referonce to torque converter and power changing" Preprint No. A.10. Bleventh P.I.S.I.F.A. congrese M.I.R.A. translation No. 9/67 by R.J.H. Milne.
49. Hertz, P.B. and Ukrainetz. Auto. - Aerodyramic drag force analyai.s". Exptl. Mechs. Yaroh 67. Vol. 7 No. 3 - 19A - 22A.

44 Lucas, G.a. and Raynar, A. 1968. HTorque convertar deaign calculations". Tech, note T.T. 6803 Dept. of Iransport Pechnology, Loughborough University of Technology.
45. Bovilecqua, E.M. and Percarpio, E.P. 2968. Eriction of rubbar on wot gurfaces". Saience, Vol.160. No. 3831 pp 959-964. Hay 311968.
46. Bogan, B.F. and Dobbie, W.J. 1967. ULower powar use and operating temperatures give 2 mply tire the edge". S.H.E. Journal Vol. 75 No. $10 \mathrm{pp} 78-81$ Oct. 67.
47. MoKonsie, R.D., Howell, W.M. and Skaar, D.E. 1967. "Computerised evaluntion of Drivar - Vehiclo Terrain syatems". 8.A.E. papar No. 670165. Autorot. Engng. Congr. Jon. 9-13. 1967 13p.
48. Forster, H.J. 1966. The offect of Automatic Transmisaions on Performance and Fuel Gonsumption": Part I. A.T.2. Oct. 1966. Vol.68. Nio. 10. pp.337-339 M.I.R.A. translation $53 / 67$ 22p.
49. Tonndswood, D.M. and Craetsel, H.A. 1967. MKintmum road load for eleotric cars". S.A.E. paper Ko. 670177. Automot. Engng. Congr. Jan.9-13, 1967. 11p.
50. Flrth, B.H. 1967. NResistance of soils to ainkage and translation of rigid bodies. A study by means of Dimensional Analyaig". S.A.E. paper No. 670172. Automot. Engag. Congr. Jan.9-13, 1967. 17p.
51. . Fedorov and Samol. 1967. "An oparating-condition recorder for road toats on a petrol engine". Avtom. Drom. Jan. 67 No. 1 p.17-19 (in Rugsian).
52. Patrushov, V.A. 1966. "A method for a gonaraliced ovaluation of the influence of the arive system on vehicle fuel consumption". iston. Prom. Dec. 1966. No. 12. p 23-27 (in Rusalan).
53. Petruahov, V.A. 1967. On the vahicle dynamic factor taking into account tyre equipment properties". Avton. Pras. May 1967. No. 5 p14-17 (in Russian)

54.	Knoroz, V.I. 1968. WThe influence of tyre rolling resistance on vibicle fuel consumption". Avtom.Pror. Marcb.68. No. 3. pll-14 (in Rnssian).
55.	Slibar, A and Desoyer, K. 1966. aEquations of notion and equivalent medels of the motor vohicle and their relation to drum test results". A.T.Z. Jan. 2966 Vol. 68. श10. 1 pl3-20. M.I.R.A. trans. 33/66 25p.
56.	Schoffier, C.B. end Eiogoth. G.W. 1965. "Customer fuel econony eatimated from engineering teats". Sas paper No. 650862. Kiat. Fuals and Lubricante Mooting Nov. 2-4 2965. 18p.
	\rightarrow -
57.	Cornoll, J.J. 1965. "Passenger car fuel ecomony characteriatics on meliern super highways" SAE Meoting Nov.2-4. 1965 6p
58.	Warren, G.B. 1965. "Somo factors influencing wotorcar fuel consumption in servicer. A S.EA.B. paper No. $65-$ HA/APC-1. Eintor Anmal Meeting Nov.7m11; 1965 6p
59.	Bland, P.G. 1966. "Saving woight means saving money". Bus and Coach. Vol. 38 No. 1. Jan.66. p2-6.
60.	stuiler, A.H. 1966. nithe performance of commercial vehicles with different power plantan Eleventh F.I.S.I.'S.A. congreas. liropint No. A.6. Juna 12-16, 1966. 29p M.I.R.A. trans. No. 66/66 320.
61.	Giles, J.G. 1966. "Variable ratio transmissions and vehicle operating econory". Mobile Research Symposium paper M8y 3-4 1966. 12p.
62.	Fourquet, H. 1965. "Colculation of car performance on eloctromic computers" Ingenieurs de 1'Auto. Feb. 65. Vol. 38 No. 2 p87-93. H.I.R.A. trans. No. 53/65 16 p.
63.	Ordorica, M.A. 1965. "Vehicle performance prediction" S.A.E. paper No. 650623. Detrail Section Meeting May 10, 1965. 20p.

64. FoEster, H.J. 1963. UTorque Convarsion range and gear. ratios in automative transalasions ${ }^{\text {º }}$. Antomobil Induatrie Dec.63. plo7-130. M.I.R.A. trans. Bo. 49/65. 7n.
65. Joyner, J. A. 1965. "Faciors affecting fuel econory in diesel powared vehicles".SAE paper Ro. 650430. Mid-year meeting, Chicago. Hay 17-21. 1965. 11p.
66. Annand, W.J.v. 1965. "Pouer for commoralal vahicles a comparison oi claims". Eng. Des. and appl. June 65. Vol. 1 No. 9 plo-9.
67. Lanin, V.I. 1965. "pisplacement of the radial reaction during the rolling of a wheal having an elastio tyre". Atom. Prom. Jurs 1965 No. 6 p30-32 (In Reassian).
68. Pogosbekov, M.I. 1964. MRaising the accuracy of the theory for detcriniming vehicle-driving-wheel speed loss". Avtom. Pron. Nov. 1964, INo. 11 p29-30. YIRA trans; No. 36/65. 8p.
69. Sevicoor, A. Re 1965: NOn the friction of rubber" Wear Mayj/June 65. $\nabla 01.8$ \$0.3 p222-237.
70. Dawley, M.W. 1965. "Aerodynamice effecte on automotive componants". SAE paper No. 948A. Internat. Automot Engng. Congr. Jan.i2-15. 1965. 20p.

7: Cox, J.H. 1965. "The fleeting tire footprint" Sas paper. Internat. Automot. Engng. Congr. Jan.11-15. 1965. 8p.
72. Cornish, J.J. 1965. "Some considerations of automobile lift and Oragn. SAE paper Kio. 948B. Internat. Automot. Engng. Congr. Janli-15, 1965. 6p.
73. Cleare, G.V. 1963. PFactors affecting the performance of high speed track layerg". I.Mach.E. Auto.DIV. Advance copy ADP2/64 Dec. 10. 1963. 16p
74. Fiala, E. 1962. "An approximate expression for the acceleration performance of road vehicles". A.T.Z. June, 1962. Vol.64. Ho.6. p195-196. M.I.R.A. trans: 44/62. 4p.
75. Noon, W.D. 1962. "Computar simulated vehicle performance" S.A.E. special publication No. SP240. Dec.62. p22-28.
76. Sturm, J.M. 1962. "Acceleration and fuel measuramenta Ney tools and techniques". S.A.E. preprint No. 471G. Automot. Engng. Congr. Jan.8-12, 1962. 8p.
77. Alezander, A.L. 1963. nEquipment for recording vehicle behaviourn. Road Research Laboratory Note No. LN/314/ALn March 1963. 20p.
78. Setz, H.L. 1960. "Computer predicts car accelaration". SAE proprint No. 196B. Summer meating. June 5-10, 1960. 33pp.
79. Louden, R.K. and Lukey, I. 1960. "Computer Simulation of Automotive fucl econorig and acceleration". SAE preprint No. 196A. Summer meeting. June 5-10, 1960. 21pp.
80. Ogorkievicz, R.M. 1960. "Amarican Military Vehicleg: Parformance calculations and dovalopmentai. Enginear. Dec. 23, 1960. Vol.210. No.5474. pp1054-1056.
81. Cato, W.Q. and Heek, J.F. 1961. "Improvement of fuel economy by nifnor changes in aarodynamic shape." SAE apectal pubilcation. S.P.195. April, 1962. pplw.
82. Wilson, W.E. and Lemme, C.D. 1968. Whe hydromechanical transmiesion - Ideal and Real". SAE paper No. 680605 Combined meeting.Sept. 9-12, 1968. (not above 24p).
83.

Ordorica, M.A. 1966. "Computer 1dealizes vehicil design through performance study". SAE Journsi. Jan.66. Vol.74. No. 1 plol-104.

84.	Grace, G.R. and Jeeves, T. 1967. ETransmission component survey!. Automotive Dea. Engng.
85.	Ishihara, T and Emori, R.I. 2966. WTorque convertor as a vibrator dampar and its transient characteristics". SAB papar Ho. 660368. Mid-year mecting. Detroit. Juno 6-10, 1966. 13pp.
86.	White, G and Chrictie, D.M. 1967. "Improving the speedholding ability of a variable - ratio transmiseion by means of differential couplingi. Int.J.Mech.. Tool Des. Res. Vol.7, p 155-168. Perganon Press.
87.	Horn, C.L.G. and Halkar, A.C. 1965. He gearbox replacement hydrostatic drive". SAB paper Bo. 650689. Farta, Construation and Industrial Machinary meating. Sept. 13-16, 1965. 12p.
88.	Molly, H. 1966. "Eydrostatio vehicle transmiasion - Their arrangement and dosign". A.T.2. Oct. 1966, Vol.68, No. 10 p 339-346. KIRA trans. No. 56/67.
89	Freeman, J.H., Stahman, R.C. and Taft, R.A. 1965. vehicle performance and exhaust emiesion, carburetion versue timed fuel injection". SAR papar No. 650863.
90.	Anon. 1969. "Tarrain vehiale performance prediction". Automotive Dealgn Enginearing. Data sheet Mo. 77 Jan. 1969.
91.	Macmillan, R.H. and Davies, P.B. 1965. "analytical otudy of ayatems for bifurcated pouer transmiseion". Journal miech. Engng. Sai. Vol.7. No.1. 1965 pp40-47.
92.	Macmillan, R.H. 29660 "The control of stopless variable speed transmiesions in automobiles and thair posaible application to regenorative aystems". tonth FISITA conerese, Tokyo, Hay, 196\%.
93.	Forster, H.J. 1965. uThe influence of Automatio transmessions on road performance and fuel consumption". The Chartered Mechanical Engineer Hov. 1965. pp611-615.

94.
95.

 resistance' ${ }^{n}$. Automobile Enginear. March, 2969.
96. Ardoino, G.L., Plnolim, \mathcal{F} and Zinidoñ, L. 1967. FEiectronic equipment for measuring motor vebicle performances on the road". Proc. I.Mech.E. Vol.182. Part 3B ppl30-139.
97. Curtiss, W.W. 2969. Low power loss tire". SAE paper No. 690108. Automot. Engng. Congress. Jan.13-17. 1969.
98. Winarvim, T. 1968. EEfect of Acrodynatic drag on the cost of transport by motorway". A.T.A. Dec. 1968. Vol. 21 No. 22. pp664-666. MRA trans. 14/69.
99. : Beudry, J and Sale, B. 1968. Investigations on processes for reduaing the omission of pollutants by modifying combustion (S.I. engines)." Twelfth FISITA congress. May 29-25, 1968.
100. Frode, W. 1966. URecent Devalopmente in the NSD Wanicel ongine". James Clayton Lecture. Proc.I.Mech.E. A.D. VoZ.Iiv Pert 2A. Advance copy ADI 2/66.

Anon. 1968. "Leyland Gas Turbine Dreotorit. Automobile Englneer. Dec. 1968.

Mabie, H.H. and Oovitk, F.W. 1957. Machaniams and dynamice of machinery.". John Wiley \& Sons. London.

Autocar. 1965. "Road test No. 2043 on NSU Spider" 3 gept. 65.

Rowbotton, A. 1969. "A preliminary matching otudy for a 38-42 ton G.V.W. Commercial Vehiclen. Finalist student project report. Loughborough Univaraity of Technology. Unpubiliahed.
105. Salrtes. T. 1968. "An index to characterize the overall fuel econory of an internal combustion engine". A.S.M.E. paper 68-HADGP-2. Winter anmal seating Dec.1-5, 1968. .
106. Kronogerá, S.O. and Rosen, C.O.A. 1969. MMatching gas turbine propulaion systems to vahicles". SAK papar IFo.680539. West coast meeting: San Francisco. Aug.12-15.
107. Smith, P.B. Meyar, W.A.P. and Ayers, RoH. 1969. "A statisicel approach to describing vehicular ariving cycles". Sas papar No. 6y0212. Automotive Engineering Congress Jan.13-17.
108. Gonbom, V.V. IVIkitin, N.A. and Khoma, S.S. 1969. A method for the complex investigation of the influence of engine and transmission parameters on the tractive and speed characteristics and fuel econogy of vehicles". Avtom. Prom. Ho.2 p5-8. Heb.69.
109. Everall, P.F. 1968. . TThe offect of road and trafilc conditions on fuel consumption". RHL Report fio. Ir 226.
110. Gau. L.P. 19̆69. A Ariveable electric car simulator". SAS papar Fio. 6y0117. Automot. Engng. Congress. Jan. 13-17.
111. Waters. D.M. 1966. Performance of vehicles short course notes available in the Dept. of Transport Technology, Loughborough Oniversity of Technology.
112. Anon. 1966. "A new dynamomater traller for teating high speed cars". MIRA.Bullotin No. 5. 1966.
113. Webb, C.R. 1952. 㫙he effect of gradient on fual consumption and speed of a road vehicle". Proc.I.Mech.E. (Auto. Divo) 1952-3.
114. Flotcher, H. 1963. Whe application of telemetry to the testing of motor vehicles". Proc.I.Mech.L. Vol. 178 Part 2A No,3.
115. Gongenbach. W and Hebar, R. 2969. Measurenent of the daflection of cross-piy and radial-ply tyres". ATZ June 1969. Vol.71. №. 6 ppl96-198.
116. Barrett, R.D. and Kicholson, J.O. 1967. IInstant trangedssion design and fleld test - by computar". SAS paper llo. 670722 Fara, Construction and Industrial Machinary. meeting. Milwankee, W.S. Sept.11-14.
117. Reece, 4. R. 1966. "Principles of soil-vehicle nechand cs". Zroc.I.Hech.E. Vol.180. Pert 2A. 1965-6.
118. Morris, P.J. 1969. "Thé measuremont of gearbox effl cdency". Project report. Dept. of Transport Technologys loughborough University of Technology.
119. Sheremet, M.I. 1969. Energy losses in vehicle - transmicaion units oparating on .7iscosity - modified 011\%. Avton. Prom. June. No. 6 pl8-19.
120. Ellis, J.A. 1968. "Performance prealction. A comparison of varicus methods of eatimating the performance of a vehiclo". Automobile Engineer. March, 1958. pll7-121.
" The above ilst of reforences is.not intended as a "blbliography".
All have been used in this atudy of "Vehicio performance calculations". The normal process of editing this thesis may, however have resulted in a few redundancies.

The following references have come to hand during the final stages of the compilation of this thesis. They are relevant and will be employed in the contimation of this work.
121. Δ rno, R.D and Bischaff, T.J. 1961. "Digital computer utiligation in the design of the experimental truck, $2 \frac{1}{2}$ ton XM521 at Detroit Arsenal". SAE paper 746. SAE international congress and exposition of Automotive Engineering. Detroit Jan 9-13 (1961). (presumably the misaing report referred to by Ogorkiewicz (80), see Section 42 , subsection 7).
122. Hwang, D.N. 1968. "Pundamental paramoters of vehicle fuel economy and acceleration. SAE paper ito. 690541. Detroit Section October 30, 1968.
123. Gamer, J. 1969. *Auslegung von Kraft Pahrzeug - Getrieben nach der Maxdmalen Mittlaron Geschwindigkeit". AF2 71 (1968)8
(a rough translation exdsts at Loughborough).
124. Everall, P.F. 1968. "The effect of road and traffic con ditions on fuel consumption". RRL report No. LR226.

Abstract

APPENDIX BY Polvnomial Gurve Elt (B079) The program listed below uses the "method of lesst squares" to fit a curve, first of order 1 and successively increasing the order by 1, until a curve of the specified order is fitted to the data supplied. The specifled order must not exceed 15 and ahould not exceed 10 if any of the data is outside the range . 01 to 100. This is because accuracy is impaired if large or small mombers are raised to high powers.

Input data

Card I in free fixed point format ISH2, ISW3, NCASES
ISW2 set at 1 if the polynomial coefficients for each of the orders fitted up to and including the specifled order are to be printed. If the coefficiente of the specifled order only are required, set ISW2 $=0$

ISW3 set at 1 if the table of observed versus calculated values are required for each order up to and including the specifled order. Setting ISW3 $=0$ produces the table for the specifled orier only.

NCASES Number of separate sets of data to which curves are to be fitted.

Card 2 Heading card, omit column 1. Anything contáined on Card 2 will be printed out as a title in the output.

Card 3 Free fixed point format H, LAST. I is the number of data points, LAST is the specifled order

Card 4 Free floating point format

$X_{1}, X_{1}, X_{2}, Y_{2}, X_{3}, Y_{3}, X_{4}, Y_{4}$, otc. up to $X_{\mathbb{N}}, Y_{\mathbb{N}}$ If NCASES is greater than 1, repeat from Card 2.
output (on 2ins printer)
After the heading, the polpynomial coefficients are printed in E-format to 9 aignficant figures. This is followed by a Table containing the read-in X-valuea (independent variable), the read-in I-values (dependent variable), the calculated I-values using the fitted polynomial and finally the difference between tho calculated and the read-in Y-values.

```
*FORTRAN AOTO, O.G.LUCAS CURVE FIT
        MASTER B079
        DIMENSION X(100),Y(100),COF(16)
        COMMON X,Y,CDF
        READ(1,101)ISW2,ISW3,NCASES
        DO 1 ICASEEI,NCASES
        WRITE(2,100)
        READ(1,102)
        WRITE(2,102)
        WRITE(2,103)
        READ(1,101)V,LAST
        REAO(1,10Q)(X(1),Y(1),I=1,N)
        CALL POLY (ISW2,ISW3,N,LAST,O)
        1 CONTINUE
        STQP
        100 FORMAT(1H145X2OHPOLYNOMIAL CURVE FIT//)
        101 FORMAT(610)
        102 FORMAT(8OW
        1 )
    103 FORMAT(1HO/1)
    104 FORMAT(200F0.0)
        ENO
```

END OF SEGMENT, LENGTH 95, NAME BO79

```
    SI=A(1,kk)
    OO 168 J=1,VORD
    188 S I=S1+A(J+1,KK)*X(1)**J
    S3=Y(!)-S1
    189 WRITE(2,1040)X(1),Y(1),S1,S3
    IF (NORD-LAST) 171,173,173
    171 NORD=NORO+1
    J=2*N\capRO
    SUMx(J)=0.
    SUMX(J+1)=0.
    SUMY(NDRD+1)=0.
    DO 172 le{1.v
    CXロX(!)
    CY=Y(I)
    SUMX(J)=SUMX(J)+CX**(J-1)
    SUMX(J+1)=SUMX(J+1)+CX**J
    172 SUMY(NORD + 1)=SUMY(NORO*1) +CY*CX**NORD
    GO TO 91
    173 CONTINUE
1020 FORMAT(IOXGHORDER = 13,5X25MROOT MEAN SOUARE ERROR m EI2.G/)
1090 FORMAT(1X3HNO.10X11HCOEFFICIENT)
1030 FORMAT(I3,F?3.9)
1100 FORMAT (11XIHX!9XIHVI6XSHYCALC!9XSHERROR)
1040 FORMAT (IX4=20.8)
    RETURN
    ENO
```

END OF SEGMENT, LENGTH BO1, NAME POLY

Evaluation of a Polynomial (B054)

The program listed below accepts a set of polynomial coefficients and evaluates the polynomial function between two values of the Independent variable in specified steps.

Input data

Card 1. Heading card, omit column 1.
Any data on card 1 (except column 1) will be printed out as a title.

Card 2 Free fixed point format RC, NP
NC is the member of polynomial coefficient a (ie. polynomial order number plus 1)

NP is the mummer of points to be evaluated.

Card 3 Free floating point format STEP, XNIT .
STEP is the step length between the value of the independent variable at each evaluation. XINIT is the initial value of the independent variable.

Card 4 Free floating point format
The polynomial coefficients starting with the constant coefficient.

Card 5 If program is to be used again immediately with fresh data, put a positive or negative integer in columns 1 and 2. If evaluation is to end, leave Card 5 blank.

```
FORTRAN COMPILATION BY #XFAS MK 9D . DATE 29/09/69 TIME 93/23;38
-fortran boSG, g.g.lucas evaluation of a polynomial
        MASTER RO54
        DIMENSION C(19)
        1 CONTINuE
        WRITE(2.100)
    100 FORMAT(10x37HEVALUATION OF A POLVNOMIAL EXDRESSION/I)
        READ(1,109)
        WRITE(2,109)
        WRITE(2.190)
        READ(1.101)NC,NP
    109 FORMAT(5]0)
C NC iS NUMbER DF COEFFICIENTS (ORDER + 1), NP IS NUMber of points p
    aEAD(1.102)STEP,XNIT
    102 EORMAT(19FO.0)
C Sted=Step length,Xnitminitial value of independent variable
    READ(1,102)(C(1),I=1,NC)
    WRITE(2,903)
    903 FORMAT(28HODOLYNOMIAL COEFFICIENTS AREI)
        nO 2 1=1,NC
        2 WRITE(2,104)C(1)
    104 FORMAT(E19.8)
        WRITE(2,105)
    905 EORMAT(14010X2OHINDEPENDENT VARIABLEqOXIBHDEPENDENT VARIABLE/)
        X=XNIT
        DO 3 J.I.NP
        YEC(1)
        00 4 1.2.NC
        4 Y=v+C(1)*x**(1-1)
            WRITE(2,106)X,Y
    106 FORMAT(F25.6.F32.6)
        3 X=X+STEP
            READ(1.999)JJ
    119 FORMAT(I2)
        IF(JJ)0.5,0
        WRITE(2.107)
        907 FORMAT(13H9
        GO TO 1
        s continue
        WRITE(2,190)
        WRITE(2,108)
    908 FORMAT(ZIHO END OF EVALUATION)
    109 EORMATEBOH
        4
    190 FOrmat(9HO)
        STOP
        END
```

END OF SEGMENT, LFNGTH 205, NAME BOS4

APPSITDIX B2

Equivalent Mass of a Vehicle

At a particular engine speed during an acceleration run, the torque delivered by the engine is, neglecting transient effecte, the measured steady running torque less that required to accelerate the engine. Tharefore, it can be rritten that

Te is the torque required to accelerate the engine and is given by

$$
T_{\theta}=I_{e} \times \frac{D_{A R} \times G}{I_{r}} \times P
$$

2
$I_{e}=$ engine inertia slug ft^{2}
DAR = drive-axle ratio
CR = gear ratio
$r_{r}=$ rolling radius of drive wheels it
$\mathcal{I}=$ vehtcle acceleration $\mathrm{ft} / \mathrm{sec}^{2}$
equation 2 may then be re-uritten as
force on vehicle $=P_{T}-I_{e} \times 7 T \times\left(\frac{(D A R X C R}{}\right)^{2} \times P-3$

This force on the velicle is required to accelerate the vehicle mass itself, the inertia of the road wheels and to overcone the drag force F_{d} whence,

therefore the propulsive force on the vehicle is

Comparison with

$$
\begin{equation*}
{ }_{P}^{F}=f_{0} \dot{m}_{E} \tag{7}
\end{equation*}
$$

yields that the equivalent mass of the vehicle is

$$
m_{E}=m_{v}+\frac{I_{W}}{\left(\bar{r}_{r}\right)^{2}}+I_{\theta} \times \eta=\frac{(\operatorname{DAR} \times G)^{2}}{\left(r_{r}\right)} \text { slug } \quad 8
$$

APPGIDIX B3

Hheel Sphn

In this appendix, the equations governiag the theory of wheel spin contained in section 8, part B are developed.

Wheel spin is said to occur when the drive force at the drive wheels is greater than the limiting tractive force.

The limiting tractive force, for a rear wheel drive vehicle is
$P_{I}=\frac{\mu M}{(a+b)}(a \cdot \cos \theta+h(\sin \theta+\underset{B}{q})) \quad 2 b P$
and for a front wheel drive vehicle
$F_{2}=\frac{\mu v}{(a+b)}(b \cdot \cos \theta-h(\sin \theta+\underset{g}{f})(b f$
(these expressions can be derived from Fig. B8.1 section 8, part B.)
The drive force at the drive wheels is obtained by subsracting the accelerating inertia torque of the engine from the steady running torque, factoring this by the transmisaion efficiency and the product of (gear ratio x drive axle ratio), subtracting the accelerating inertia torque of the drive wheels only, dividing the torque by the rolling radius, fron which is subtracted the rolling resistance of the drive wheels onily.
\therefore This accelerates the vehicle nass and that of the free road uheels, overcomes the aerodynamic drag and the cradient term in the drag equation and finally caters for the rolling resistance of the free road wheels.

Thus, for a conventional type of vehicle having half its road wheels as drive wheels and no slippage between drive wheols and road,

$$
\begin{align*}
& \text { drive force }=P\left(\frac{H}{g}+\frac{I_{w}}{\left.2 x\left(r_{r}\right)_{30}^{2}\right)}\right)+\text { Aeradynamic drag }+W .1 \\
& \quad+\frac{H}{2}\left(A_{d}+B_{d} \cdot \nabla\right) \tag{3}
\end{align*}
$$

which is equivalent to

$$
\text { drive force }=P\left(\frac{H}{g}+\frac{I_{V}}{\left.2 \times\left(r_{r}\right)_{30}^{2}\right)}\right)+F_{d}-\frac{H}{2}\left(A_{d}+B_{d} \cdot V\right) \longrightarrow \text { (4) }
$$

The maxdmum possible vehicie acceleration is obtained by equating the drive force to the limiting tractive force producing, in the case of the rear wheel drive vehicle

$$
P_{\max }=\frac{\frac{\mu W}{(a+b)}(a \cos \theta+h \sin \theta)-P_{Q}+\frac{H}{2}\left(A d+B_{d} \cdot V\right)}{H_{G}+\frac{I_{W}}{2 x}\left(r_{r}\right)_{30}^{2}}
$$

and for a front wheel drive vehicle

$$
\begin{equation*}
f_{\max }=\frac{\frac{\mu_{W}}{(a+b)}(b \cos \theta-h \sin \theta)-P_{d}+\frac{H}{2}\left(A_{d}+B_{d} \cdot V\right)}{\frac{H}{g}+\frac{I_{w}}{2_{0}\left(r_{r}\right)_{30}^{2}}+\frac{\mu \not(h h}{g(a+b)}} \tag{6}
\end{equation*}
$$

The Tables A.B3.1 to A.B3.4 given below liat a proportion of the calculated values of liniting tractive force.

The Tables A.B3.5 and A.B3.6 11st some results of maximum vehicle acceleration calculations.

The vehicle particulars used in the calculations are that s-

waight	$H=2128$ 1bs
rolling radius	$\left(r_{r}\right)_{30}=0.94 \mathrm{ft}$
total wheel inertia	$I_{W}=1.96$ alug ft^{2}
position of centre	$a=3.70 \mathrm{ft}$
of gravity	$\mathrm{b}=3.85 \mathrm{ft}$
	$\mathrm{h}=1.66 \mathrm{ft}$
drag coofficients	$\mathrm{A}_{\mathrm{d}}=0.018$
	$\mathrm{Bd}_{\mathrm{d}}=0$.

These Tables are used to construct the graphs in Fige. B8. 2 to B8. 5 given in Section 8, part B.

The listing of the computer program (B065) used in the ovaluation of the flgures in the Tables is given below.

```
    LIST(LO)
    PROGRAM(AOA5)
    IND|Y!ec.mil
    n|fplligaldo
    HNO
    MAQIPQ AnAS
    WAITP(G.10n)
100 FORMAY(90X10WWHFRL EDIN//)
    WRITE(G.109)
901 FORMAT(4OX9GHREAR WHEEL DRIVF//):
    W:2128.
    A=3.7
    B=3.85
    H=1.66
    RR=.94
    AIW=1.96
    ADE.098
    BD=0.
    V=0.
    M=O
    6 CONTINUE
    CF:0.
    DO 1 I-1.19
    WRITE(4,102) CP
102 FORMAT(29HO COEFFICIENT OP FR&CTION ISF6.2)
    THETA=0.
    DO 2 Jबí,?O
    F=0.
    DO 3 K=1,6
    TETHETA*3.94450265/180
    TFECF*W/(A+R)*(A*CO&(T)+H*(SIN(T)+F/32.2))
    WRITE(4,903)THPTA,M,TF
903 FORMAT(F7.2.510.2.195.3)
    3 F=F+4.
    FM=(CF*W/(A+R)*(A*COS(T)+H*SIN(T))-W/2.*(AD+BD*V*2.*RIN(T)))/(W/32
    1.2+AIW/2./RR/RR-CF*WゅH/32.2/(A+B))
    WRITE(4,104)TMFTA,PM
104 FORMAT(F7.2.E15.4)
    2 THETA=THFTA ? ?.
    1 CFECF+. 1
        1F(M)0.0.5
GOS FORMAT(1H{)
        WR!TE(6.105)
        W::TE(6.4;)6)
106 FORMAT(GOXITMEQINT WMEPL DEIVE//)
    M=1
    B=3.7
    A=3.85
    H=-1.66
    00 TO 6
    5 CONTINIIM
    STOP
    END
    FINISM
```


Abstract

APPENDIX 84

\section*{The classical mathod of desiening intermediate gear ratios}

The basic assumption behind this method is that the engine operates between two opeeds. The lower limit is near the maximum torque speed when the engine throttle or flue paxp rack is fully open. The upper limit is below maximan allowable engins apeed but may be above maximun brake horsepower speed. a gear change with an accelerating vehicle changes the engine apeed from the upper 11mit to the lower 11mit.

Fig. A.B4.i depicts this condition in a plot of input to gearbox speed (related to engine speed) against output from gearbox speed (related to vehicle speed). For a pasticular gear ratio, the relationship between ingat and output speads is: representated by a straight $11 n$ passing through the origin, the slope of the line being the gear ratio. The lower and upper 1imits on the imput to gearbox speed are denoted by In and Hu respectively. When the upper speed 1 imit is raached in flrst gear, a change is made to gear 2, the input opeed dropping to the lower limit Γ_{L} and the output apeed remaiming at H_{2}. This process is repeated for successive gear changes throughout the vehicle acceleration period until top gear ratio is engaged.

By deflinition, the relationship between firgt gear ratio and the gearbox input and output speeds is

$$
\begin{equation*}
\mathrm{CR}_{(1)}=\frac{\mathrm{Z}_{1}}{\mathrm{~B}_{1}} \tag{1}
\end{equation*}
$$

This relationship is shown in Fig. A.B4. 2
Also, by definition,

$$
\begin{equation*}
G_{(2)}^{G R}=\frac{\mathbb{K}_{u}}{\mathbb{1 2}} \tag{2}
\end{equation*}
$$

and, as can be seen in Fig. A.B4.1

$$
\begin{align*}
C R(2) & =\frac{N_{L}}{N_{1}} \\
& =\frac{N_{L}}{N_{u}} \cdot \frac{N_{u}}{N_{1}}=\frac{N_{L}}{N_{L_{1}}} \cdot G R_{(1)} \tag{3}
\end{align*}
$$

similarly,

$$
\begin{equation*}
=\left(\frac{\mu_{L}}{\left(\mathrm{H}_{u}\right)}\right)^{2} \cdot \mathrm{CR}_{(1)} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
G R(4)=\left\{\left(\frac{\left.\mu_{H}\right)^{3}}{\left(N_{2}\right)} \cdot G R(2)\right.\right. \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{GR}_{(\mathrm{NG})}=\left(\frac{\underline{H}_{4}}{\mathrm{~N}_{\mathrm{L}}}\right)^{\mathrm{N}_{\mathrm{G}}-1} \quad \mathrm{CR}(1) \tag{6}
\end{equation*}
$$

This is a geometric progression
Now top gear ratio and bottom gear ratio, CR (NG) and CA (1)
are fixed by other considerations.

$$
\begin{aligned}
& \mathrm{CR}(3) \pm \frac{\mathrm{S}_{4}}{\mathrm{~N}_{2}} \text {. } \\
& =\frac{K_{L}}{N_{L}} \times \frac{N_{u}}{N_{2}}=\frac{R_{L}}{K_{L}} \cdot{ }^{C R}(2)
\end{aligned}
$$

Thus the number of gear ratios (BG) required is obtained by aatiofying

$$
\begin{equation*}
B_{L}=N_{N G-i} \sqrt{\frac{\text { top_gear ratio }}{\text { bottom gear ratio }}} \times \mathrm{Ku} \tag{7}
\end{equation*}
$$

where NG mast be an integer greater than 1.
If the maxdran torque speed of the engine is 10 w , the 'engine is said to be "flexible", 职 can be low and so nocessitating a small mmber of gear ratios only.

If H_{L} is fized at a figure conaiderably greatcr than that equivalent to engino maximum torique speed, a larger mumber of gear ratios results, but thore will be more "overlap ${ }^{n}$ between the gear ratios. That is to sey that, near a vehicle gear change speed, either of two cear ratios may be engeged. This is an important consideration in performance wart on gradieats.

APPTADIX B5

Tailormade Optimisation Technique

It is not necessary to optimise the intermediate gear ratios to a high degree of accuracy, because the transmission designer must be allowed some latitude. Accordingly, a method was devised to keep computer time to a minimun. Basically, the tailor-made technique optimises each intermediate gear ratio separately, and in turn. This cycle is repeated four times.

Fig. A.B5.1 depicts the expected shape of the time to speed variation against the value of a particular gear ratio (crip). Point 1 on the curve denotes the initial guess. Point 2 denotes an evaluation of the function when the particular gear ratio has been inareased by 0.1. Point 3 when the gear ratio has been increased by a further 0.1. At every evaluation, a check is made to see if the new point produces a lower or higher time to speed. The gear ratios contime to be increased by 0.1 until an evaluation (point 5) proves worse than the previous value. Tho procedure then is to contime subtracting 0.01 from the gear ratio until the optimum point has been passed. 0.005 is then added to the gear ratio and it declared to be the optimum value.

If the second evaluation (point 2 on Fig. A.B5.2) should prove worse than the initial guess, then 0.2 is aubtracted ρ the gear ratio at point 2 and the method contimes to subt0.1 until the optimum is passed. The method then adds 0 . the optimum is again passed. 0.005 is then subtracted,
ratio declared the optimum.
The first difficulty envisaged is shown in Fig. A.B5.3. Successive trials with gear ratio increasing in steps of 0.1 produce better answers, even though point 4 has passed the optimum. To increase the gear ratio beyond this before starting the subtraction of 0.01 would mean up to twenty evaluations in steps of 0.01. Accordingly, the method stores the current evaluation, the previous evaluation and the pemultimate evaluation. By comparing the current evaluation with the pemiltimate evaluation it is possible to assess whether the previous value has passed the optimum. If the current evaluation returna a greater time to speed than the pemitimate, the technique is to Jump back to the previous evaluation and to start remtracing in steps of 0.01 . Similarly, if 0.1 is successively subtracted from the gear ratio under consideration and the current evaluation proves worse than the pemultimate, the method returns to the previous value and 0.01 is successively added onto the gear ratio until the optimum is found.

The initial comparioon involves comparing the second evaluation of the time to speed with the first. In order to prevent the program reaching premature conclusions based upon the device described in the previous paragraph, the pemilimate evaluation is deliberately set at a very high value. In fact to 1000 times the first evaluation. On the next run through, the pemultimate
evaluation assemes the value of the first and the previous the value of the second, and so on.

Fig. A.B5.4 is a picture of the tailor-made optimisation program. TS denotes the current evaluation of the function, T TS the previous evaluation and T SX the pemitimate evaluation. J is a marker or tracer used to keep track of the previous path through the program at ang eiven time. The circuit on the left of Fig. A.B5.4, coloured green, is the main circuit. Infially, J is eet at zero. If successive triala contime to produce better times to speed, J is remet at 10 and 0.1 is added on to the gear ratio each time. If the initial direction of increading the gear ratio is found to be wrong, J is set at 1 and 0.1 subtracted from the gear ratio each time.

This contimes until TS is no longer less than TTS. A teat is then made to see if $T \mathcal{T S}$ is less than the pemltimate ovaluation T SX. If it $10,0.02$ is successively added to or subtracted from the gear ratio as appropriate, the marker J being used to decide which path to take. If, however, $T S$ is greater than $T S X$, the upper red circuit is used. This causes the program to jump back to the previous trial and to start the small scale search for the optimum, through the lower red circuit on the left.

Much of the lower part of Fig. A.B5.4 is the small scale serrch of adding or subtracting 0.01 onto the gear ratio. The red circuit to the extreme right, however, is to cater for the unlikely event of the current evaluation proving equal to the pemitimate evaluation. In this case it is taken that the previous value of
gear ratio is the optimum.
Each gear ratio is subjected to this program in turn; and the uhole procedure repeated in order to cover the routine four times.

The various posaible routes are depicted in Figg. A.B5.5 to A.B5.11. The initial guess is shoun as point 1 in each case and the carrent, previous and pemultimate function evaluation, together with the value of the tracer J, is shown'in the adjoining tables for each atep. Fig. A.B5.5 shows the process of optimisation when the initial guess is some vay to the left of the optimum. Fig. A.B5.6 depicts a similar set of circumstances using the pemplimate ovaluation to shorten the procedure. FIg. A.B5.7 is when the initial guess is to the right of the optimum. Fig. A.B5. 8 showe the condition when the initial guess is to the left of the optimum and the second step returns a better result, but is past the optimam. In Fig. 4.85 .9 and Fig. $4 . B 5.10$ the initial guess is very close to the optimum, in the one case, just to the left and in the other, just to the right. Fig. A.B5.11 shows the initial guess at or very close to the optimum such that the evaluations either side are equal. The tables trace out the path followed until the small scale search is started.

From the forejoing, it will be seen that the tolerance or the search for a particular optimum gear ratio is ± 0.005. This is usually adequate for practical parposes. The rea. of the mothod lies in the elimination of unnecessary eve
of the function.
The listing of the optimisation procedure is contal ned uithin the licting of the main vehicle performance program (BOO1) in Section B12.

APPSTMMT B6

The Rosenbrock Optigisation Subrouting

The subroutine liated below finds the maxdmum or the minimua of a function of up to 16 independent variables subject to up to 24 constraints.

The variables $X(I), I=i, 2,3$ otc. must be set up initialiy in the MASTER segment of the progrom.

The flrst subrouting (FXS6B) is the control eribroutine. The arguments are as follows

N = Number of independent variables
$M=$ Kamber of constraints

$$
\mathbb{B} \leq M \leq 24
$$

KMAX $=$ The mmber of iterations per variable IFRIFIP, if set at zero, extra print out is obtained.

BJ Put at +1. if a madmim is sought, i. for a minimam.
F is the funotion evaluation to be madmised or minimiced. Reservation of 32 storage spaces in DITIESSIOH W (32) carries the 32 quantities contained in the HASTLR program neceseary to ovaluate the function tbrough the Rosenbrock subroutine and into the spealal subroutin GALXCH which generates the function to be maxinised or minimised.

O (I) and H (I) are the upper and lower bounds respectively of varlable X (I). These bounds are set up in the MASTIR progrem.

If no contraints are needed, put
$G(I)=I(I)-1$
$H(I)=X(I)+1$
and reset these values each time in the subroutine calych.
The subroutine CALXCd is identical to the subroutine TLNE contained in the main vebicle performance program (BOOL) listed in Section Bl2.

The structire of a program using the Rosenbrock subroutines therefore, is

MASTER PROCRAM


```
            SUPROUTINE PYS68(N,M,KMAX,IPRINT,RJ,F)
            OIMENSION ARQAY(3OB),G(48),H(48),Y(24),W(32)
            COMMONARRAY,G,H,X,W
            CAII PXSGIA(N,M,L,IT,ICOUNY,NA)
            201 CALI CALXGH(N,M;保,F)
            CALI PYSESAIN,M,L,IT,ICOIJNT,INDIC,F,BJ,KMAX,NA,NGI
            GO TO(202,204,201-I.INDIC
202 rALL. OXSG2A(N,M,L,NA)
```



```
                GO TO(201.2031,INOIC
203 RETUPN
END
END OF SEGMFNT, LENGTH 55,NAME PXSBB
```

$$
\begin{aligned}
& \therefore \quad \therefore \quad \text { SUBROUTINE DXSGIA(N,M,I,IT,ICNUNT,NA) } \\
& \text { DIMENSION B(?), U(2). A(272), D(16),E(16) } \\
& \text { COMMON B,U, } \triangle, O, E \\
& \text { EXPF(X) EEXP(X) } \\
& \text { LOGE(X) }=A \operatorname{IOG}(x) \\
& \operatorname{SINF}(x)=\operatorname{SIN}(x) \\
& \cos f(x)=\cos (x) \\
& \operatorname{ATANF}(X)=\triangle T A N(X) \\
& \operatorname{SORTF}(X)=\operatorname{SORT}(X) \\
& \operatorname{ABSF}(X)=A B S(X) \\
& \text { 8(1)=0. } \\
& \text { B(2) }=0 \text {. } \\
& 1 \text { COUNTaO } \\
& \text { DO LLEI, N } \\
& A(1)=0.1 \\
& E(1,1=0 \text {. } \\
& K=L \\
& \text { DO } 1 \text { KRaI.N } \\
& x=k+N \\
& A(K)=0 \text {. } \\
& \text { IF(I-KR)1.3.1 } \\
& 3 . A(X)=1 . \\
& \text { - continue } \\
& \mathrm{I}=\mathrm{N} \\
& \text { ITEI } \\
& \text { WRITE(4.2) } \\
& \because \because \\
& 2 \text { FORMAT SOH:OX } 96 \text { MAXIMUM DR IMINIMUM-OF } \\
& \text { RETURN } \\
& \text { END: } \\
& \text { END OF SFGMENT, LENGTH 103. NAMF PXSBIA } \\
& \text { A. CONSTRATNED FUNCTIONT: }
\end{aligned}
$$

```
    SUBROUTINE DXSEIA(N,M,I,IT,ICOUNT,NA)
    DIMENSION B(2),!(2),4(272),D(16),E(18)
    COMMON R,U,A,D,E
    EXPF(X) =EXD(X)
    LOGF(x)=ALOG(X)
    SINF(X)=SIN(X)
    Cosf(x)=cos(x)
    ATANF(X) =ATAN(X)
    SORTF(X)=SORT(X)
    ABSF(X) ■ABS(Y)
    B(1)=0.
    B(2)=0.
    ICOUNT=0
    DO 1L=1,N
    A(L)=0.1
    E(L.)=0.
    K=L
    NO Y KR=I,N
    K=K+N
    A(K)=0.
        IF(1-KO)1,3,1
        3 A(K)=1.
        ICONTINUE :
        I=N
        IT=1
        WRITE(4,2)
        2 FORMATISOH: DXSG,MAXIMUM OR OINIMUM-OF A CONSTRAINEO FUNCTIONI,
            RETURN
            ENO
END OF SFGMFNT, I.ENGTH 1O3, NAMF PXSBIA
```

```
                    SUARQUTINE DYS62A(N,M,L,NA)
                            SORTE(X) ESORT(X)
                            DIMFNSION B(2);U(2), A(272), D(16)
                            COMMON B,U,A,D
                            a LEN-1
                            \(J 0=1\)
loe \(K=N \neq J O+N\)
    \(\Delta(K) E O(N) * \Delta(K)\)
    \(k R=L\)
    \(104 \mathrm{~K}=\mathrm{N}+\mathrm{Jn}+\mathrm{KR}\)
    \(4) A(K) \theta D(K P) \star \Delta(K)+A(K+1)\)
        \(K R=K R-1\)
        IF(KR:)103.103.104
        \(103 j \cap=j n+1\)
        IF (N- 10\() 105.106 .106\).
        1050029 1. 21 ?
        R(t.100.
        \(k=1\).
        On x. \(1 \mathrm{JTm} . \mathrm{N}\)
        \(K=k+N\)
```



```
    29 B(L) mSQRTF(R(1.))
        R(?) \(\mathrm{A}(\) ? \() / 8(1)\)
        JOE 1
        \(5 L=1\)
        6 IF(1-J0)43,7.43
        43 R \(0=0\).
        \(k=J \cap\)
        \(004.4<0=1, N\)
        \(k=K+N\)
        JSEKㄴ.
    \(44 B \cap=\Delta(K) * A(J K)+B 0\)
        \(k=J \cap\)
        \(0045 K R=1 . N\)
        \(K=K+N\)
        \(J S=K-L\)
    \(45 \Delta(K) a-A(J S) \neq 8 \cap+A(K)-\)
        \(1=1+1\)
        GO PO S
    \(7 \mathrm{BO}=0\).
        \(k=1\).
        Dก 4 A JTE \(=1 \cdot v\)
        \(K=K+N\)
    \(46 R 0=A(K) * A(K)+R O\)
        BOESQRTF(AO)
        \(K=10\)
        \(A D=1.180\)
        OO \(47 \mathrm{JT}=1 . \mathrm{V}\)
```


$\because \quad$ END OF SEGMFNT: LENGTH
396. NAMF PXSS2A

```
    SUPROUTINE DYSGZA(N,M,L,IT,ICOUNT,INOIC,F,BJ,KMAX,NA,NG)
        ARSF(Y) 区ABC(Y)
        DIMENSION B(2),U(2),A(272), \cap(16):E(16),G(48),H(48),X(24)
        COMMON G,U,A,O,E,O,H,X
        U(IT)=F*日\
        lS=1
        102 1F(G(15)-X(IS))61:22,22
        61 IF(X(IS)-H(IS))62,2?,22
        62 fF(i)(1)-U(IT)163,63,16
        63 KR=M+1S
            Gn=0.9090*G(IS)+0.0001*H(IS)
            HO=G(IS)+H(IS)=CO
            IF(G0-x(1S)IA4,54;24
    64 IF(XIIS)-HO)65,65,26
    65 G(KR.)=U(1)
        H(KR)=U(1)
    98.IS=IS+1
        IF(1S-M)102.102.21
        21 IF(TT-2)186.14,166
        166 IT=?
        68 INDTC=2
        GO TO 101
        22 [F (1T-2)23.15,23
    23 WRITE(4.90)
    99 FORMATIA3M INITIAL VALUES OF X NOT WITMIN CONSTRAINTSI
        60 TO B&
    24 IF (IT-1)AB.2\:58
    68 G0-(GO-x(IS))/(00-G(IS))
        H0日|(IT)-Q(<<R)
    25 BO=(-2.*GO+4.)*GO-3.
        U(IT)=80**O*HN+U(IT)
        GO TO 98
    26 [F(1T-1)67,23,67
    67 GOE(Y(IS)-HO)/(H(IS)-HO)
        HOEU(TY)-H(KR)
        GO TO 25
    14 IF(11(1)-1)( ) 1)54,54,16
    S4 GOEABSF(E(L))
        TF(CO-1.)55.55,15
    55 E(t)=4.5
    150(L)00(1)+A(L)
        U(1)a|l?)
        A(!) \=.*A(L)
        G\ TO 17
    16. KR=1.
        ON 55 IS=1,N
        KR=KR&N
    56 X(PS)=-A(KR)*\Delta(L.)+X(IS)
```

```
        A(I.)==0.S*A(1.)
        IF(F(L)!17.57.97
        37 E(I:)N-E(L)
        17 IF(1COUNT-N*KMAX)58,58,6B
        98 Dn 50.ISmI.v
        IF (F(IS)+1. 199,59.18
        S9 CONTINUF:-
        INOIC=I
        GO:TOTO1
        18 IE (G-N)60,12,60
        60 L=L+1
        G0 Tח 13
        12L=1
        13 K=L
        OO 75.KRail.N
        k=k+N
        76 X(KR)=\Delta(LJ)*A(K)+X(KR)
        ICOINT=\COUNT+I
        IT=?
        INDICis
        101 RETHRN
        ENO
```

ENO OF SEGMENTY LENGTH BIS, NAME PXSGSA

```
    SURROUTINE DYSGQAIN,M,L,IIT,ICNUNT,IPRINT,INOIC,KMAX,BJ,NA,NG:
    DIMENSION B(2),U(2),A(272),O(16),#(16),G(4A),H(48),Y(24)
    COMMON B,U., D,D,E,G,H:X
    BOaRJ*U(1)
    1F(PPRINT)33,48,33
    48 WRITE(Q,10?)ICOUNT,BO,8(1),R(2)
    DO CO LEI,M
    49 WRITE(4,103)X1L).
    33 IF-(1GOUNT-N*KMAY)50.50.9
    50 IF(IT-1)11.0.11
    9. INDIC=2
        G0 In 105
102 FORMAT(I5,2(BY,E12.5),F20.5%
103 FORMAT(SX,E42.5)
    11 On 52 L=1.N
    n(1.)=0.
    52 E(1.)n0.
        L=1
        k=L
        00 53 KR=1,4
        K=K+N
    53 X(KR)=A(L)#A(V) +X(KR)
        ICOUNTEICOUNT.4
        IT=?
        INOIC=1
105 RETURN
    END
END OF SEGMENT, LENGTH 177. NAMF PXSBAA
```


APDENDTX 87

Hore detailed optimisation

The program listed below (BO8O) uses the Rosenbrock optimisation subroutines of Appendix B6 in order to find the intermediate gear ratios which give the mindman sum of the time up to
$\frac{1}{8} \nabla_{2}, \quad \nabla_{2} \nabla_{2} \quad \frac{3}{4} \nabla_{2}, \quad \frac{7}{6} \nabla_{2}$ and ∇_{2}
where ∇_{2} mile/h is some specified final speed.
This is an attempt at emphasiading the importance of the vehicle acceleration at the lower speeds.

The read-in data to $B 080$ is identical to that for BOOL described in Seotion Bl2. Program BO8O carries on to evaluate engine mariman torque speed and mardmum brake horaepower speed. Statement number 60 sets the imitial values of the intermediate gear ratios such that theis reciprocal values are in arithmetic progression. Between statement rambers 402 and 401 the Rosenbrock constraints $G(K)$ and $H(K)$ are set. Statement mamber $401+1$ sets the test gradient (GGO) at gero and atatement mamber $401+2$ fixes the degree of printout required. Statement mmber $401+3$ calls up the Rosenbrock subroutines. Forty iterations per variable are specified.

BO80 contimes by evaluating the time to accelerate between two speed 11 mita on the specified gradient if it is greater than sero. Flnolly, Bos0 evaluates maximum vehicle speed in a manner
identical to BCOL.
Pollowing the listing of BO8O is a typical printout. This consists of the headings, title and the read-in data, followed by the results of the engine maxieum torque and brake horsepover speed evaluations. The legend "PXS6, MAXHMM OR KINIMDM OP A CONSTRAINED FUNCTION" demotes entry into the Rosenbrock subroutines. The numbers following shou the progress of the optimisation procedure. Column 1 is the mmber of iterations. Column 2 gives the current evaluation of the function. Column 3 and 4 concern the mechanism of the procedure and give the current step length and degree of rotation of the axes of the evaluation respectively. After printing out the current data in the four columns, the value of the variables are listed. In this example there are two.

The final table of the print out gives the gear ratios and the madmum vehicle speed on the level in each of the gears.

```
    MASTER BORO
    OIMFNSIONAR2AY(308),G(48),H(48),X(24),W(26),GR(10),F(10)
    COMAONARRAY,G,H,X,GR,GCT,DAR,RR,AT,BT,CT,DT,ET,AD,BD,AK,WW,AIW,AIE
    I,CF,KA,A,R,\PsiH,NG,NO,VBS,VI,V2,GGG,RM,FT,GT,RMIN,OTOR,WV,RX
    EXPF(X) =EXO(X)
    LOGF(X) = AL.DC(X)
    SINF(X) a SIN(X)
    CosF(x)= Cos(x)
    ATANF(X) =ATAN(X)
    SQRTF(X) & SORT(X)
    ABSF(X) =ABS(X)
    15 CONTINUE
        J=25
        WRITE(4,100)
        REAN(1.1001)
        WRITE(4,1001)
        WRITE(4,1002)
        1 READ(1,10R)AT,BT,CT,OT,ET,FT,GT,VES,NO
        IF(J-1)2,26.2
    5 CONTINUE
    3 CONTINUE
    2 READ(1,102)NG,NB,NBOT
        IF(NB)0,6,6
        6 CONYINUE
        REAO(1,108)(GR(1),I=1,NG)
        IF(J-6)26,25,7
    7 READ(1,1OR)DAR,RR
        IF(J=7)8,26,8
    4 READ(1,10B)OUG,RR
        NO=6
        1F(J-5)26,25,8
    8 REAO(1,108)AIW
    IF(J-A)9,26.9
    9 READ(1.108)AIE,RMIN
        IF(J-Q)10.26.10
    10 KEAD(1,10B)NW,A,B,HH,KA
    IF(J-10)11,26,11
    11 REA\cap(1,108)AD,BO,AK,XK
    Xk= Xk/1000000.
    IF(J-11)12,26,12
    12 READ(1,108)GG
    IF(J-12)13,26,13
    13 REAN(1,108)GCT,CF
    IF(J-13)14,26,14
    14 READ(1,108)V1,V2,WV
    IF(J-14.1410,26,410
    20 WRITE(4,113)
410 WRITE(4,114)AT,BT,CT,DT,ET,FT,GT,VBS,AIE
```

```
    WRITE(4,115)
    WFITE(4,1:6)AD,BD,AK,GG,GCT,CF,NG
    WRITE(4,131)
    WRITE(4.,132)WW,A,B,HH,RR,AIN
    WRITE(1,1:7)VI
    WRITE(q,!18)V2
    WRITE(4,1003)WV
    IF(KA)27.28.28
    27 WRITE(4,119)
    GO TO 29
    28 WRITE(4,120)
    29 IF(J-25)252,250,250
252 IF(J-12)556,251,251
556 lF(V=3)250,557.251
251 J=55
    GO T0:19
250 J=0
    RM=RMIN
30 DTOR=BT+2.*CT*RM/1000.+3.*DT*(RM/1000.)**2*4.*ET*(RM/1000.)** 3 + 5.**
    IFT*(RM/1000.)**4+6.*GT*(RM/1000.) |**5
    IF(J-1)31.31,.32
    31.IF(OTOR)32,33,33
    33 RM=RM*500.
    J=1
    G0 TO 30
    32 IF(J-10)34,34,35
    34 IF(DTOR)36;36,35
    36 RM=RM-50.
    J=10
    GO TO 30
    35 IF(OTOP)37;28,36
    38 RM=RM+5.
        J=100
    GO TO 30
    37OTDR=AT+BT*QM/1000.+CT*RM*RM/1000000. +DT*(RM/1000.) ** 3 & ET* (RM/1000
    1.)**4*FT*(RM/1000.)**5+GT*(RM/1000.)**6
    WRITE(4,121)DTDR,RM
    J=0
    RMP=R的
    39 DP*AT+2.*RT*RMP/1000.* 3.*CT*(RMP/1000.)**2*4.*DT*(RMP/1000.)**3 +ET
    1*5.*(RMP/1000.)**4*FT*6.*(RMP/1000.)**5*GT*7.*(RMP/1000.)**6
        IF(J-1)40,40,41
    40 IF(DP)41,42,42
    42 RMP=RMP+500.
        J=1
        GO TO 39
    41 IF(J=10)43,13,44
    43 IF(DP)45,45,44
```

45 RMP=RMP-50.
Jalo
GOTO 39
44 IF(DP) 145,47.47
47 RMPERMD 5.
$J=100$
GO TO 30
$46 \mathrm{DP}=2 . * 3.1415026 / 33000 . *(A T+B T * R M P / 1000 .+C T *(R M P / 1000) * * 2 * D T *.(R M P)$ 11000.$) * * 3+E T *(R M P / 1000) * * 4+.F T *(R M P / 1000) * * 5 * G T *.(R M P / 1000) * * 6) *$. 2 MP
WRITE(4,122)OP,RMP
557 CONTINUE
IF(NB)4R.49.49
48 CONTINUE
IF (RMP \& OUG-VBS)256,256,257
257 DUGEVES/RMP
WRITE(1.151)
256 CONTINUE
IF(KA)50.51.51
51 GRAROATAN(A/(A+B-HH))
ROT=WW*SIN(GRAD.)*RR/DTDR
IF (OTOR*BOT-WW* (B*COS (GRAD)-(HH-RR)*SIN(GRAD)) $152,52,53$
53 WRITE(4.123)
GO TO 52
50 GRAD=ATAN(B/(A+B+HH))
BOTaWW*SIN(GRAD)*RR/OTDR
52 CONTINUE
GRAD=1./SINF(GRAD)
WRITE(4.124)GRAD
GRADEFMP*DUG/1000.
GRAD=15.*3.14159/660.*RMP*(AT+BT*GRAD+CT*GRAD**2*DT*GRAD**3*ET*GRA
10**A*FT*GRAD**5*GT*GRAD**6)*DUG
$J=0$
$V M=0$.
54. TEFन $1.99758-.0000879 * V M) *(.96-.000316 * V M-.0000058 * V M * V M$ I
$T E F=V M *(W W *(A D+V M * B D)+A K * V M * V M) / T E F$
IF(J-1)55,55,58
55 IF(GRAD-TEF) 58 ,59,57
$57 V M=V M+10$.
$J=1$
GO TO 54
58 IF(TEF-GRAD)59,407,56
$56 \mathrm{VM}=\mathrm{VM}-1$.
$J=10$
GO TO 54
59 continue
$V M=V M+.5$
407 CONTINUE

```
    WPITE(4,125)VM,DUG
    IF(NEOT)O,1100,0
    READ(1,:O8)BOT,DAR
    GO TO 1:OL
1100 CONTINUE
    RX=RR*(1.t+K*(VM*VM-900.))
    DAR=PMP*OUG*RO*3.14159*15./VM/660.
    BOTaBOT/DAR
1.101 CONTINUE
    WRITE(4.,126)
    WRITE(4.127IDAR
    WRITE(4,128)ROT
    ANGENG-1
    DO 60 1=1,NG
    A!=I~I
    60 GR(I)=1./(1./ROT+(AI*(1.-1./BOT))/AANG)
    GRAD=0.
    JJ=NG-1
    IF(JJ)84,400,400
4OO CONTINUE
    JJJ=NG-2
    IF(NO)61,62,62
    61. CONTINUE
    IPRINT=O
    00 63 l=2;JJ
    63 WRITE(4,129)I,GR(I)
    GO TO }40
    62 CONTINUE
    IPPINTEI
402 CONTINUE
    00401 I=2,J, 
    K=I-1
    G(K)=1.
    H(K)=80T
401 X(K)=GF(I)
    GGG=0.
    IPRINT=0
    CALI. PXS6B (JJJ,JJJ,40,IPRINT,#1.,TS)
    OO 76 i=2,JJ
    K=1-1
    GR(I) =X(K)
    GRAU=RM*3.14.159*RR*15./GR(I)/DAR/660.
    TEF=GRAO*VRS/RM
    76 WRITE(4,140)I,GR(I),GRAD,TEF
        WRITE(1,134.)TS
        IF(CG)64,85,84
    84 CONTINUE
    GGG=GG
```

 7
    ```
    CALL CALXOH (JJ,JJ,IT,YS)
    NR!TE(4,133)TS
    85 CONTINUE
    GO TO 255
    49 IF(KA)BO,81,81
    ू̂\ CC=SORT(1.-GG*GG)
        C=B*CC-HH*GG
        IF(OTDR*OAR*GP(1)-WW*C)80,80,82
    82 WRITE(4,101)
    60 CONTINUE
        DO 86 i=1,NG
        GRAD=RM*3.14159*RR*15./GR(1)/DAR/860.
        TEF=GRAD*VBS/QM
    86 WRITE(4,140)I,GR(I),GRAD,TEF
        GGG=GG
        CALL CALXGH (JJ,JJ,IT,TS)
        WRITE(4,133)TS
255 CONTINUE
    WRITE(4,137)
    00 A8 I=1,NG
    OGR=3.1415926*15.*RR/660./DAR/GR(i)
    VM=OGR由RMIN
    J=0
    89 DF=NW*(AD*VY*RD)*AK*VM*VM
        AI=NG-I
        TEF=(.96-.000316*VM=.0000058*VM*VM)*(.9.9758*(1.-.007*AI)=.0000879*
        IVM*2.OB**AI)
        R=VM/OGR
        T*AT*8T*R/1000.*CT*(R/1000.)**2*OT*(R/1000.)** 3*ET*(R/1000.)**4*FT
    1*(R/1000.)**5*GT*(R/1000.)**6
    TF=T*GR(I)*TEF*OAR/RR
    IF(J-1)93.93.94
    93 IF(TF-DF)95:96,96
    96 VM=VM+10.
        J=1
        GO rO 89
    94 IF(DF-TFI97:406,98
    95 CONTINUE
    IF(VM)90,405,98
405 VM=VM+10.
    GO TO 80
    98 VMavM-1.
        J=10
        GO TO B9
    97VM=VM+. 5
406 CONTINUE
    IF(VM-VES*OGR) 90,91,91
    91 CONTINUE
```

```
    GRAD=VBS*OGO
    WRITE(4,138)GR(I),GRAD,I
    GO TO B&
90 CONTINUE
    WRITE(4,139)GR(1),VM
88 CONTINUE
    V=RMP*OGR
    GRAD=VM/V
    WRITE(4,142.GOAD
    WRITE(4.,127)DAR
87 J=0
    READ (1,102)J
    1F(J)203,203,99
99 CONTINUE
    WRITE(4,1000)
    G0 TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),J
203 WRITE(4,150)
    STOP OI
100 FORMAT(10Y19HG.G.LUCAS AUTO DEPT/8X37HLOUGHBOROUGH UNTVFRSITY OF T
    IECHNOLOGY//IOX45HVEHICLE PERFORMANCE - ROSENBROCK OPTIMISATION//I
101 FORMATYIOX49H ***** VEHICLE MAY OVERTURN IN FIRST GEAR *****/I
102 FORMAT(3I2)
103 FORMAT(2FG,3)
105 FORMAT(F7.1,3F6.2,12)
106 FORMAT(3F8.6)
107 FORMAT(F7.5)
108 FOR:AAT(IOFO.0)
111 FORMAT(2F6.4)
112 FORMAT(2F4.0)
113 FORMAT(//5X7HNEW RUN//)
114 FORMAT (15 K29HENGINE TORQUE CHARACTERISTICS27X2OH MAX. ENGINE ENGI
    INE/74XIAHSPEED INERTIA/7F10.S.F11.1,F11.3/I
115 FORMAT\5XITHDRAG COEFFICIENTS8X42HGRADIENT GEAR CHANGE COEFF
    1 ND OF/42\times29HTIME OF FRICTION GEARS)
116 FORMAT(3F9.6,3F11.5.110/)
117 FORMAT(2IM INITIAL SPEED MPH #F5.0)
118 FORMAT(18H FINAL SPEED MPH =F5.0%)
131 FORMAT(65H WEIGHT POSITION OF C OF G ROLLING RAD FT INERTIA
    IOF WHEELS)
    132 FORMAT(F7.1.3F7.2,F15.4.F18.3/)
119 FORMAT(26H FRONT' WHEEL DRIVE VEHICLE/)
120 FORMAT(25H REAR WHEEL DRIVE VEHICLE/)
121 FORMAT(3OH MAXIMUM ENGINE TOROUE LB.FY =F8.3/27H MAXIMUM TOROUE SP
    IEEO PPM =F6.O/)
122 FORMATI27H HAXIMUM BRAKE HORSEPOWER EF8.3/17H MAX. BHP SPEED EF6.O
    i/)
123 FORMAT(10X65H ***** VEHICLE MAY OVERTURN ON:MAX, GRADIENT IN FIRS
    1T.GEAR *****/)
```

```
    124 FORMAT(4IH MAX. GRADIENT VEHICLE CAN CLIMB IS I IN F6.2/)
    125 FORALT(28H MAX. SPEED OF VEHICLE MPH =F6.1/25H DEGREE OF UNDERGEAR
        IING 口F7.4/)
    12B FORIAAT(3AH top GEAR RATIO takEN AS 1 TO l,gIVING)
    127 FORMAT(IGH ORIVE AXLE RATIO aF7.3)
    12E FOR=IAT(2OH SOTTOM GEAR FATIO -F7.3/)
    129 FORMATII2H GEAR RATIO 13.3H = F7.3.14H INITIAL GUESSI
    130 FORMATII2H GEAR RATIO [3,3H= F7.3.5X2IH TIME TO SPEED SECS EFB.2)
    133 FORMAT(34HOSUMMATION OF TIMES TO SPEED SEC DFQ.2/)
    134 FORMAT(/3OH TIME TO SPEED ON LEVEL. SECS EFB.2/)
    137 FORMATI/15X23H MAXIMUM SPEED ON LEVEL/27H GEAR RATIO SPEED M
        (PH)
    138 FORMAT!FIO.1,5X41HENGINE MAX. SPEED LIMITS VEHICLE SPEED FOFG.1,12
        IH MPH IN GEARI3)
    139 FORMAT(F10.1.F15.1)
    142 FOPMAT(25H DEGREE OF UNDERGERRING =F7.4)
    140 FORMATII2H GEAR RATIO 13,3H= F7.3/5XF6.1,41H MPH TO LIMITATION SE
        IT BY VALVE zOUNCE OFF6.1,4H MPH)
    150 FORMAT(/22H END OF CALCULATIONS)
    151 FORMAT(76H DUE TO ENGINE SPEEO LIMIT DEGREE OF.UNDERGEARING IS RED
        IUCED TO FIGURE BELOW/)
1000 FORMAT(IH:)
1001 FORMAT(BOH
        1 )
1002 FORMAT(1HO//)
1003 FORMAT(32H HEAD-ON WIND VELOCITY MILE/H : F8.2%)
        END
```

END OF SEGMENT, LENGTH. 1570. NAME 8080

```
    SUEROUTINE CALXGH (JJ,JJ,IT,TMMAX)
    DIMENSIONARRAY(308),G(48),H(48),X(24),W(26),GR(10),F(10)
    COMMDNARRAY,G,H,X,GR,GCT,DAR,RR,AT,BT,CT,DT,ET,AD,BO,AK,WW,AIW,AIE
    1,CF,KA,A,B,HH,NG,NO,VBS,VI,VMAX,GGG,RM,FT,GT,RMIN,DTDR,WV,RX
    V2=VMAX/2.
    TMAy=0.
    DO 70 MAX=1.5
    TS=0.
    V=Vi
    AAI=0.
    OVE2.
    ND.IS=0
    DISF=O.
    L=0
    CC=SQRT(1.-GGG*GGG)
    J3=NG-1
    DO 43 l=2,j3
    K=I-1
    43 GR(i)=X(K)
    IF(V-V1.)42,42,3
    42 CONTINUE
    C=E*CC+HH*GGG
    BW=1,-C/CC/(A+B)
    IF(GGG-BW*CF*CC)3,3,2
    2. WRITE(4.,100)
    3 CONTINUE
    BW=CF=WW/(A+B)
    IF((V2-V)/DV-25.)4,5,5
    4 OV=OV/2.
    GO TO 3
    5 KV=(V2-V)/OV+1.
    DO 6 kat1,kv
    CF=WW*(GGG*AD+V*BD)+AK*(V+WV)**2
    DO 7 1=1,NG
    AI=NG-I
    OGR=3.1415926*15.*RR/660./OAR/GR(I)
    Rav/OGR
    IF(VBS-R)27,28,28
    27 F(1)=0.
    GO TO }
    28 CONTINUE
    IF(RM-R)66,66,0
    T=OTDR
    GO TO }6
6 6 \text { CONTINUE}
    T=AT*BT*R/1000.*CT*(R/1000.)**2*DT*(R/1000.)** 3+ET*(R/1000.)**4*FT
    1*(R/1000.)**5+GT*(R/1000.)**6*
    6 7 \text { CONTINUE}
```

```
    TEF=(.95-.000316*V-.000005E*V*V)*(.99758*(1.-.007*AI)-.0000879*V*2
    1.08**AI)
    TF=T*TEF*GR(I)*OAR/RR
31 CONTINUE
    PF#TF-DF
    IF(PF)14,15;15
    14 F(I):0.
    GO TO }
    15EM=WW/32.2+AIW/RR/RR*AIE*TEF*(GR(I)*DAR/RR)**2
    F(I) aPF/EM
    IF(KA)10.11.11
    10.C=B*CC-HH*GGG
        TFF=8W*(C-HH*F(1)/32.2)
    GO.TO 30
11C=A*CC+HH*GGG
    TFF=BW*(C+HH*F(I)/32.2)
    3O CONTINUE
    IF(F(1)*(WW/32.2+AIW/RR/RR/2.)-TFF+DF-WW/2.*(AD+V*BD))12,12,13
    I3 CONTINUE
        WRIYE(4.,104)V,I,TFF,TF.
        IF(KA)47,48,48
    47 CONTINUE
        TF=.99*((BW*C-DF*WW*(AD+BD*V)/2.)*EM/(WW/32.2+AIW/RR/RR/2.*BW*HH/3
    12.21+DF)
        GO TO 31
    48 CONTINUE
        TF=.99*((BW*C-DF*WW*(AD+BD*V)/2.)*EM/(WW/32.2+A!W/RR/RR/2.-BW*HH/3
    12.21+DF)
        GO TO 31
    12 CONTINUE
    7 CONTINUE
        FG=0.
        J=L
        DO 16 I=1,NG
        IF(F(I)-FG)16,16.18
    18 FG=F(I)
        J=1
    16 CONTINUE
        IF(FG)19,19,20
    19 CONTINUE
        OGR=3.1415926*15.*RR/660./DAR/GR(1)
        IF(V-RM*OGR)6,6,62
    62 CONTINUE
        WRITE(4,106)J,V,V2
        WRITE(&,111)
        GO TO 50
    20 CONTINUE
        IF(J-L)21,22,21
```

```
    2! CONTINUE
        IF(NO)O,68,58
        WRITE(I,101)J,V
        68 CONTINUE
        IF(L)23.24,?3
    23 ANETCT
    GO TO 17
    22 CONTINUE
    24 AN=O.
    17 L=J
        AA2=(AA1+DV+22./15./FG)/2.
        IF(V-VI)60.61,60
    60 CONTINUE
        TS=TS+AAZ+A.V
    61 AAI=DV*22./15./FG
        DISFE(V+OV/2.)*22./15.*(AA 2+AN.)
        IF(NOIS)0,0,65
        IF(DISF-1320.165,0,0
        NDISa1
    65 CONTINUE
    6 V=V+DV
    so continue
        IF(NO)44.45.45
    44 WRITE(1,109)TS
    45 CONTINUE
        TMAX=TMAX+TS
        V2=v2+VMAAX/B.
    70 continue
        RETURN
100 FORMAT(10XE5H ***** VEHICLE WILL SLIP DOWNHILL WITH HANDBRAKE ONL
        IY SET *****/)
    101 FORMAT(2IH GEAR CHANGE TO RATIOI3,2OH GEAR CHANGE SPEED =F7.2/)
    104 FORMAT(F8.2.18XI8HWHEEL SPIN IN GEARI4,13H FRICT. LBF gFIO.2,F11.2
        1)
    106 FORMATI3OH SET SPEED UNOBTAINABLE GEAR=13,13H. SPEED MPH =F7.2.,23
        1H SET UPPER SPEED MPH =F7.21)
    107 FORMATIS5H: SPEED ACCEL 1/ACCEL SPEEO DRAG GEAR RATIO/
    IQOH MPH ET/SEC2 SEC2/FT FT/SEC LBF.)
    108 FORMAT(2F7.7,F11,5,FB,2,F10.2,18)
    109 FORMAT(29H INTERMEDIATE TIME TO SPEED =E14.6)
    111 FORMAT(27HOTIME SO FAR IS GIVEN BELOW)
    112 FORMAT(5X33HQUARTER MILE MARK PASSEO SPEED =F7.2.18HMILE/HOUR, T
    11ME EF8.1.15HSECONDS APPROX.)
        END
```

END OF SEGMENT, LENGTH 732, NAME CALXGH
G. G.LUCAS AUTO DEPT LOUGHZORDUGH UNIVERSITY OF TECHNOLOGY

VEHICLE PERFORMANCE - ROSENBROCK OPTIMISATION

MORE-DETAILEDOPTIMISATION VEHICLE A OEC 1987 O-
$\therefore \quad \because \quad \because \quad \because$

ENGINE TOROUE CHARACTERISTICS

```
MAX. ENGINE ENGINE SPEED INERYIA 6500.0 INERTIA
``` \(0.18596 .47 .89786-17.13362 \quad 2.87567\)-0.420590.06966 00.00570 DRAG COEFFICIENTS GRADIENT GEAR CHANGE COEFF NO OF 0.0179000 .0000000 .025000 OF FRICTION GEARS WEIGHT POSITION JF. C OF G ROLLING RAD FT INERTIA OF WHEELS \(2128.0 \quad 3.70\) 3.85 1.66 \(0.9400^{\circ}\)
1.985

INITIAL SPEED MPM a 0 .
FINAL SPEED MPH = 54.
HEAD-ON WIND VELOEITYMILE/H \(=0.00\)
PEAR WHEEL DRIVE VEHICLE
MAXIMUM ENGINE TORQUE LR.FT=48.761
UAYIMUM TORQUE SPEED RPM \(=2520\).
MAYIMUM BRAKE HORSEPOWER \(=34.817\)
MAX. BHP SPEED \(=5010\).
VAX, GOADIENT VEHICLE CAN CLIME IS I IN 1.88
YAY: SPEED. OF VFHICLE MPH \(=70.5\)
GEGREE OF UNDERGEARING \(=0.9300\)
POP GEAR RATIO TAKEN AS 1 TO I,GIVING
DFIVE AXLE RATIO = 4.444
SOTTOM GEAR RATIO \(=4.118\)

\section*{GEAR RATIO}

SPEED MP:-
40.9
59.2
70.6

MAYIMUM SPEED ON LEVEL
ENGINE MAX, SPEED LIMITS VEHICLE SPEED TO 23.8 MPH IN GEAR 1

\section*{APPENDIX B8}

\section*{Accuracy of Road Teats}

The Road Teste corried out by the aemi-technical press are concucted by skilled operators using a stop watch to measure time and an amlogue type of flfth theel to measure vabicle speed. The vepue of the testa is invariably the Motcr Industry Research Association proving ground at Lindleg.

The type of instrumentation is not the best possible. The induatry and M.I.R.A. profer a digital type of fifth wheel and no stop watch. The pulses from the fifth wheel are recorded on magnstic tape and analyoed later by a special data reducion technique. This gives a nore accurate record of vehicle speed against time. However, stop watches in the hands of experts can give acceptable results.

The difference between a stop watch test and a test conducted in the most accurate maner possible is likely to be quite small. So small in fact that it may be suamped by the effect of ambient conditions at the time of the test or by small production differences between the tent vehicles.

It was considered preferable therefors, to compare one stop watch road test againat another for a mamber of motor cars. The tests chosen for this purpose vere those of "The Autocor" and "The Motor". Both magazines test a new model soon after introduction and publish Road Test reporte.

Sometimes the same vehicle is used by the two magazines. From these teats, the accuracy of the tcsts themselves may be assessed. More usually, however, different exarples of the same model are tested, from which some assessment may be made of the production differences between cars of the same design:

Fige A.B.8.1 to A.B.8.5 are the "Autocar" and "Motor" road test results using the same vehicle in each case. Fig. A.B.8.6 to A.B.8.9 are a selection of road teat results by both "autocar" and "Hotor" on different examples of the same design in each case,

In Fig. A.B.8,1 the "Yotors" acceleration times are considerably poorer than the "Autocar" figures. It is doubtfill if all the discrepancy can be attributed to vehicle test weight difference because Fig. A.B.8. 2 shows the "Motor"': timea powar agal \(n_{\text {, }}\) however this time the "Motor" test weight is leas.

Turning now to road tests on different examples of the same design, Fig. A.B.8.6 shows that there can be appreciable differences, In general, however, the road test resulte contalned in Fige. A.B8,6 to A.B.8.9 show a similar order of discrepancy to those in Figs. A.B.8.1 to A.B.8.5. This means that the technique of the road tests conducted by the eemd-technical press could be improved. Conducting road tests uhen the wind speed is appreciable does not help. The recorded maxdmum vehicle speeds are given also in Fig. A.B.8.1 to AbB.8.9. These again show a sigmificant difference in the teating by the two authorities.

The data used to construct Figg. A.B.8.1 to A.B.8.9 vas taken from References (29) to (35).

In order to compare the accuracy of the calculated performance of a vehicle and the corresponding road test, the performance of the saloon version of vehicle a was chosen. The reason for the choice is that much of the design data is common to vehicle \(A\), the drag data is known (9) and the vebicle has been road tested (28), (36). The test weight for both the Autocar and the Motor road teste was 2016 lbf (18 cwt). Weather conditions on the day of the Autocar road test are described as "dry, still" with an air temperature of \(54^{\circ} \mathrm{P}\) (ambient pressure not quoted). The weather prevailing on the day of the Motor road test is described as "hot and dry with slight

Table A.B.8.1 records the input data used in the calculated performance and the results of the calculation. The calculated maxdmum vehicle apeed of the saloon version of vehicle \(A\) is 75.1 mile/h compared with \(75.5 \mathrm{mile} / \mathrm{h}\) recorded by "The Motor" (36) and \(76.8 \mathrm{mile} / \mathrm{h}\) by "The Autocar \({ }^{-1}\) (28).

Fig. A.B.B. 10 compares the calculated time to speed with the figures given by the "Motor" and the "Autocar". The discrepancy between the two actual road tests is vary similar to that shown above. The calculated time to speed agrees closely with that of the "Autocar" in the higher speed eange and is somewhat iworse: in the lower speed range.

\section*{AFPRWDIX_B9}

\section*{Iime to speed integral}

\section*{The integral}
\(t=\int_{\nabla_{1}}^{\nabla_{2}} \cdot d \nabla\)
has to be evaluated using mamerical methods since the function
\(\boldsymbol{f}=\mathbf{f}(\boldsymbol{V})\)
is not known.
Reference to Fig. C7. 2 in Part \(C\) suggests that it is \({ }_{\lambda}\) reasonable supposition to state that vehicle acceleration varies linearly with vehicle speed. Hence, at speed \(\nabla\), where V2 \(\nabla\) V2,
\[
P=P_{1}+\frac{V-\nabla_{1}}{\nabla_{2}-\nabla_{1}}\left(P_{2}-f_{1}\right) \quad:- \text { A.B.9.2 }
\]

Putting A.B.9.2 into A.B.9.1 and effecting the integration results in the time to speed between vehicle apeeds \(\nabla_{1}\) and \(\nabla_{2}\) as
\[
t=\frac{\left(V_{2}-V_{1}\right)}{\left(I_{2}-I_{1}\right)}\left\{\left\{\operatorname{loge}\left(I_{2} f_{1}\right)\right\} \quad\right. \text { A.B.9.3 }
\]

Using expression A.B.9.3 therefore, to calculate the area of a thin strip under the \(1 / \mathrm{f}\) va. \(\nabla\) curve 1s \(11 k e l y\) to be nore accurate than simply assuming the strip to be trapesoidal in shape.

Expression A.B.9.3 shows however, an indeterminancy to exist when \(f_{2}=f_{1}\). This may be investigated further by writing
\[
f_{2} / f_{1}=1+\frac{f_{2}-f_{1}}{f_{1}}
\]
and expanding the logarithmic term in expression A.B.9.3 to give
\[
\begin{align*}
& t=\frac{\left(V_{2}-V_{1}\right)}{I_{1}}-\frac{\left(V_{2}-V_{1}\right)\left(I_{2}-I_{1}\right)}{\text { 2. } \mathscr{I}_{1}{ }^{2}} \text { etc. } \quad \text { A.B.9.4 } \\
& \text { As } \mathrm{P}_{2} \longrightarrow \mathrm{P}_{1} \longrightarrow \mathbf{I} \text {, this becomes } \\
& t=\frac{\nabla_{2}-\nabla_{2}}{\rho}
\end{align*}
\]
which assumes constant acceleration during the speed interval \(\left(\nabla_{2}-\nabla_{1}\right)\).

If, however, \(\left|\left(\left(f_{2}-P\right)\right)\right|\) is small, the expression A.B. 9.4 may be replaced by the approximate relationship
\[
t \simeq \frac{\left(\nabla_{2}-\nabla_{1}\right)}{\left(f_{2}+I_{1}\right) / 2} \quad \text { A.B.9.6 }
\]

Equation A.B.9.6 therefore assumes that each thin strip under the \(1 / \mathrm{P}\) v. \(\nabla\) curve is a trapesium.

This investigation may be contimed further to calculate the distance (s) covered during speed interval \(\left(\nabla_{2}-\nabla_{1}\right)\). Noting that
\[
B=\int_{V_{2}}^{V_{2}} \underset{\mathrm{E}}{\mathrm{Y} \cdot \mathrm{dV}} \quad \text { A.B.9.7 }
\]
and incorporating equation A.B.9.2 results in
\[
\therefore=\frac{\left(\nabla_{2}-\nabla_{1}\right)^{2}}{P_{2}-P_{1}} \cdot \frac{\left(\nabla_{2}-\nabla_{1}\right)\left(f_{1} \cdot \nabla_{2}-P_{2} \cdot \nabla_{1}\right)}{\left(\mathcal{P}_{2}-\mathcal{P}_{1}\right)^{2}} \cdot \operatorname{loge}\left(\begin{array}{l}
\left(\mathcal{I}_{2}\right) \\
\left(\bar{P}_{1}\right)
\end{array} \ldots\right. \text { a.B9.8 }
\]

Again, this may be expanded to give the relationship
\[
\begin{aligned}
& s=\frac{\nabla_{2}-\nabla_{1}}{f_{1}}\left(\nabla _ { 1 } \left(1-\left(\frac{\left(f_{2}\right)}{f_{1}} \frac{1}{2}\right)+\frac{\nabla_{2}}{2}-\frac{\left(f_{1} \cdot \nabla_{2}-f_{2} \cdot \nabla_{1}\right)\left(f_{2}-f_{1}\right)}{3 . f_{1}^{2}}\right.\right. \\
& \text { otc. ; } \\
& \text { - A.B9.9 } \\
& A \mathrm{f}_{2} \longrightarrow \mathrm{P}_{1} \longrightarrow \mathrm{P}_{\mathrm{s}} \\
& a>\underbrace{\left(\nabla_{2}{ }^{2}-\nabla_{1}{ }^{2}\right)}_{28}
\end{aligned}
\]
which assumes constant acceleration during the speed interval \(\left(\nabla_{2}-\nabla_{1}\right)\).

The assumption that vehiole acceleration is a linear function of vehiole speed is closer to the actual function than that assuming the reaiprocal of veisiole acceleration is linear with speed (the trapesoidal strip). Use of equations A.B.9.3 and A.B.9.8, in order to calculaie the time elapsed and the diatance covered during the speed interval \(\nabla_{1}\) to \(\nabla_{2}\), will be more accurate than slaply taking the mean acceleration reaiprosel during the speed interval. The advantage diminishes, however, as the speed interval diminishes in size.

Shsuld it ever become necessary to question the accuracy of relationships A.B.9.3 and A.B.9.8, it will be necessary to develop new expressions for time and distance starting with an assumption similar to that implicit in equation C4.5, section \(C\), developed in connection with uind apeed correotions.

\section*{APPBNDIX DI}

\section*{Deriviation of function \(V=\nabla(t)\) governing the results of decoleration tests}

Vohicle drag is usueily expressed in the form
\(F d=V\left(A d+B d_{\cdot} V\right)+R \cdot A \cdot\left(\nabla+\nabla_{W} \cdot \cos \theta_{W}\right)^{2}\) lbf \(-A \cdot D \cdot 1.1\)
where \(W=\) vehicle weight \(10 f\)
\(A d, B d\) and \(K\) are drag coofficionts
\(A=\) projected frontal area of vehiole \(\mathrm{ft}^{2}\)
\(\mathrm{V}=\mathrm{vehtcle}\) specd mile/h
\(\nabla_{w}=\) wind speed mile/h
\(\theta_{w}=\) direction of aind relative to head-on direction

Equation A.D.1. 1 reduces to
\[
\begin{aligned}
F d= & U_{0} A d+K \cdot A \cdot V_{v}^{2} \cdot \cos ^{2} \theta_{v} \\
& +\left(W_{0} \cdot B d+2 \cdot K \cdot A \cdot \nabla_{v} \cdot \cos \theta_{v}\right) \cdot V \\
& +K \cdot A \cdot \nabla^{2} 1 b I \quad \text { A.D.1.2 }
\end{aligned}
\]
which is a second order polynomial in \(\nabla\) of the form \(P d=a+b \nabla+c \nabla^{2} l b s \quad\) a.D.1. 3

During a deceleration teat, the force causing the deceleration is the vehicle drag force. Hence, from Newton's Second Law \(P d=a+b \nabla+c V^{2}=-M_{E} \cdot \frac{d V}{d t} \times \frac{22}{15} \quad\) A.v.1.4
where
\[
\frac{d V}{a+b V+c v^{2}}=-\frac{d t}{M_{B}} \times \frac{25}{22}
\]
giving
\[
\frac{1}{0} \int \frac{d V}{\left(V+\frac{1}{2} \frac{b}{0}\right)^{2}+\frac{a}{0}-\frac{b^{2}}{4 c^{2}}}=-\int \frac{15}{22 \sqrt{E}} \cdot d t
\]

There are three possible forms to solution of equation A.D.1. 5 dependent upon whether
\[
\frac{a}{c}-\frac{b^{2}}{40^{2}} \text { is negative, gero or positive. }
\]

If \(\underset{c}{a}>\frac{b^{2}}{40^{2}}\)
using the substitution that \(u=\nabla+\frac{1}{2} \frac{b}{c}\)
therefore, \(\quad \frac{d u}{d V}=1\)
equation A.D.1. 5 becomes
\(\frac{1}{c} \int \frac{d u}{u^{2}+\left(\frac{a}{c}-\frac{b^{2}}{40^{2}}\right)}=-\frac{15 . t}{22 . M_{3 B}}\) const. \(\quad\) A.D.1. 6
This is a standard integral and reduces to
\(\frac{2}{c\left(\frac{a}{c}-\frac{b^{2}}{\left.4 c^{2}\right)^{\frac{1}{3}}} \operatorname{Tan}^{-1}\left(\frac{\left(V+\frac{b}{2 c}\right)}{\left.\left(\frac{a}{0}-\frac{h^{2}}{4 c^{2}}\right)^{\frac{1}{2}}\right)}=-\frac{15 a t}{22.1_{B}} \text { canst. }\right.\right.}\) A.D.1.7
isolating V Fields

The constant of integration may be found by specifying the initial velocity of the deceleration test. That is by saying that
\[
\nabla=\nabla_{0} \text { when } t=0
\]

Hence, the final expression is
\[
\nabla_{m i l e / b}=\mathcal{P}\left\{\frac{\left.\left(\frac{V_{0}+n}{I}\right)-\operatorname{Tan}(r \cdot f \cdot t)\right\}}{1+\left(\frac{V_{0}+n}{I}\right) \cdot \operatorname{Tan}(m \cdot f . t)}\right) \quad-n \quad-A \cdot D .1 .9
\]
where
\[
f=\left\lvert\,\left\{\left.\left(\frac{g}{0}-\frac{\mathrm{b}^{2}}{40^{2}}\right\} \right\rvert\,\right.\right.
\]
- A.U.1.10
\[
\begin{aligned}
& V=\left(\frac{a}{0}-\frac{h^{2}}{\left.4 c^{2}\right)^{\frac{1}{2}}} \operatorname{Tan}\left\{\left(\frac{(-15 . t}{22 . H_{E}} \times c \cdot\left(\frac{a}{(c}-\frac{b^{2}}{4 c^{2}}\right)^{\frac{1}{2}}\right)\right\}\right. \\
& \left.+\left(\text { cost. } x c \cdot\left(\frac{a}{\left(c-b^{2}\right.} 4^{2}\right)^{\frac{1}{2}}\right)\right\}\left\{-\frac{b}{2 c}-\right.\text { A.D.1.8 }
\end{aligned}
\]
and \(n=\frac{b}{2}\)
alco
\(a=W_{\cdot} A d+K_{\cdot} A_{\cdot} V_{v \cdot}^{2} \cdot \cos ^{2} \theta_{w}\)
- A.D. 1.13
\(b=W_{0} B d+2 \cdot K_{0} A_{\cdot} \nabla_{W^{*}} \cdot \cos \theta_{W}\)
- A.D. 1.14
and \(c=K_{\text {. }} A_{\text {. }}\)
- A.D.1. 15

If \(\frac{a}{c}=\frac{b^{2}}{40^{2}}\), again making the aubstitution that
\[
u=\nabla+\frac{1}{2} \frac{b}{0}
\]
equation A.D.2. 5 becomes
\(\frac{1}{0} \int \frac{d y}{u^{2}}=-\int \frac{15}{22, M_{5}} \cdot d t\)
integrating gives
\[
\frac{2}{c\left(v+\frac{h}{20}\right)}=\frac{15 . t}{22.4 E}+\text { const. }
\]
from which

where \(m\) and \(n\) are given by equations A.D.1.11, A.D.1.12,
A.D.1. 14 and A.D. 1.15
putting in the boundary condition that
\[
\nabla=\nabla_{0} \text { when } t=0
\]

Fields
Vmile/h \(=\frac{1}{m . t+\left(\frac{1}{\left(V_{0}+n\right)}\right) \quad-A . D .1 .18 ~}\)
If \(\frac{p^{2}}{4 c^{2}}>\frac{g}{0}\), again making the substitution
that
\(u=\nabla+\frac{1}{2} \underset{c}{\mathrm{~b}}\).
- A.D.1. 19
equation A.D.1. 5 now becomes
\(\frac{1}{0} \int \frac{d u}{u^{2}-t^{2}}=-\left(\frac{15 . t}{22 . M_{R}}+\right.\) const. \(\left.)\right\}\) A.D.1. 20
the solution is that

re-arrangement and substitution of the boundary condition that
\[
v=\nabla_{0} \text { when } t=0
\]
ylelds

again, \(f, m\) and \(n\) are defined by equations A.D.1. 10 to A.D.1.15.

\section*{APPANDTX D2}

\section*{Linerriastion of a TANB function}

Appendix D. 1 ahows that the experimentel results of a deceleration test upon a vehicle should obey ons of the equations A.D.1.9, A.D.1. 18 or A.D.1.22 dependent upon the drag coefficiente of the vehicle. Since the purpose of the deceleration test is to find the drag coefficients, the equations should first be IInoarised to enable a curve fitting procedure, such as the method of "least aquares" to be used.

Equation A.D.1.18 is rolatively simple to deal with. Equation A.D.1.9 is zartually impossible aince it is a tangent function. Equation A.D.1. 22 may, however, be linearised. Equation A.D.1.21 in Appendix D. 1 is given as

ther may be remritten in the form \(y=2 . k_{0}(t+\) const. \()\)
A.D. 2.1
where

- A.D.2. 2

It way be show that
\[
\mathfrak{u}=\mathbf{P}_{\cdot} \operatorname{Tanh}(k(t+\text { const. })) \cdot \text { A.D.2.3 }
\]
where \(u\) is defined by equation A.D.1. 19 as
\[
\mathrm{n}=\mathrm{V}+\frac{1}{2} \frac{\mathrm{~b}}{\mathrm{c}} \quad \text { A.D.1. } 19
\]

If \(B A^{\prime}=0\) and there was sero wind apeed during the teat,
then \(b=0\)
Hence, \(\quad u=V\)

Now a feature of a Tanh function is that it is asymptotic to unity and that initially, the funotion approaches unity very rapidly.

Note that
\(\tanh 2=.96\)
\(\tanh 3=.995\)
\(\tanh 4=.999\)
Thits a curve of the experimental results \(V=\nabla(t)\) will reveal \(I\) in equation A.D.2.3 as the value of \(V\) at a large time \(t\).

Having found \(f\), it is possible, by using a "least squares" computer program or by plotting \(y\) against \(t\), to Aind a proliminary value of \(k\).

This preliminary value of \(k\) may be improved upon by subsequent iteration until the desired accuracy is reached.

\section*{APPENDIX_D. 3.}
pigital computar progran to reduce the vehicle drag coefflcients
from the results of a deceleration test.

ICT 1905 program B032
This program; listed below, accepts time against speed points from a deceleration test on a vehicle. This data is reduced to the drag coofficiente, first assuming that there is a drag term proportional to velocity and then assuming that vehicle drag consists of a rolling resistance term and an aerodynamic drag term only. Finally, the program gives a check on the accuracy of the overall teat and reduction of results, also a comparison can be made of the accuracy of one set of drag coofflofents against the other.

The progrem starts by smoothing out the input data by fitting a sixth order polynomial to the raw results. The accuracy of this fit can be assessed because the full "read-in": values with the respective curve fit values are printed out in the form of a table. The output data is so arranged to give adequate information on the accuracy of the reduction and the actual test at every stage. Allowance is made for wind speed; but it should be realised that, for accuracy, the wind speed should be low and at a small angle only to the head-on direction of the vehicle.

\section*{Input Read-In data}

Card 1 Heading data, vehicle model, date etc. Leave column 2 blank.

Card 2 H, X Free flyed point Pormat
\(\because \quad \mathrm{B}=\mathrm{Ho}\). of data points
\(B=\) Order of polynomial curve fit to input data
If gero, the program will use sixth order.
Card 3 Woight of vehicle lbf
Sum total of wheel inertias slug \(\mathrm{ft}^{2}\) rolling radius of wheals it amblent pressure in \(\mathrm{H}_{\mathrm{g}}\) amblent teaparature \(O_{F}\) projected frontal area of vehicle \(\mathrm{ft}^{2}\) (if the projected frontal aren is not known red 10 acro)
wind speed mile/h
wind direction relative to head-on deg
All in free floating point format
Card 4 and subsegiont cards
input data in free floating point format consisting
of N pairs of time and speed points. Put time (s)
firgt followed by speed (mile/h).

For a repeat run with new data, put any positive integar in colunns 2 and 2 of the next card. Repeat from Card 1. Otharwise, leave the last card BLaNK.

An example of the output from this program is given in Part D, section 4.

Statement mumbers 32 to \(102+1\) of the listed program concern the "read-1n" data given above. Statement mumbera \(102+2\) to \(i\) set the projected frontal area of the vehicle at unity if the actual value is not known, that is if it has been read in as zoro. Statemont maber 1+1 ovaluated the equivalent mass of the vehicle and the following DO LOOP dom to statement 2 sets up the input data for the polynomial curve fit subroutine POLY, listed in Appendix B. 1 From there down to statement mumer 106 the input data is printed out for reference.

The coofflcients of the aixth order polynomial curve fit at statement muber 106+1 are given as \(\operatorname{COF}(1), \operatorname{COF}(2)-\operatorname{COF}(7)\).

The DO LOOP down to statement manber 3 sets \(\mathbb{Z}\) as the vehicle speed, differentiates the polynomial expression to obtain the vehicle deceleration which is then maltiplied by the equivalent mase of the vehicle to give the drag force. This drag force is then given the symbol 7. Statement 107+1 fits a second order
polynomial to these \(X\) and \(Z\) values. The resulting coefficients \(\operatorname{COF}(1), \operatorname{COF}(2)\) and \(\operatorname{COP}(3)\) are then reduced, making due allowance for the head-on wind speed during the test, to give the drag coefficionts \(A d, B d\) and \(K\). These values are printed-out. If the projected frontal area of the vehicle is not know, the product (\(\mathrm{K} \cdot \mathrm{A}\)) is printed-out instead of K . Also printed-out here is tho aerodynamic drag coofficient \(C_{d}\) and the air density on the day of the test.

Statement mumbers \(15+1\) down to 19 test the coefficients to see which of the expressions A.D.1.9, A.D.1. 18 and A.D.1.22 in Appendix D. 1 is applicable to the original data. The appropriate expression is partially reduced and stored as AL, CC and AM.

The DO LOOP to statement maber 7 gives the symbol \(X\) to the square of the vehicle'a relative air apeod. Symbol I is, as before, the drag force. Statement mumber 7+1 fits a straight isne through the \(X\) and \(I\) points from which the drag coefficients, assuming \(\mathrm{Bd}=0\), are found. These drag coefficients are printedout.

The program between statement mubers 13 and 117 concerns the check on the accaracy of tie results and of the test itself. Both seta of calculated drag coofficients are fed beck into the appropriate \(V \equiv \nabla(t)\) expression governing the deceleration test (see Appendix D.1). The original vehicle speed against time
results are compared with the two sets of calculated results using the two sets of reduced drag coefficients.

Statement muber \(117+1\) reads in a card which, if blank, Gignals the end of the calculations. If, however, a positive Integer is found in either Column 1 or Column 2 or both, the progran suritches to the beginning and another set of data may be read-in.

\section*{FORTRAN COMPILATION EY \#XFAS-MK-IC -DATE -22/04/68-TIME-13/09/33}

```

--118-GORNAT(1H1)
-- WRT IE(2,107)
IO7 FORMAT (69H POLYNOMIALTCURVE-FIT
* IRAG FORCE'LRF%/I
-...-CALL POLY (0,0,N,2,0)
WD=WD.3:1415926/180:
AK=COF(3)/PA
AD=(COF: Y)=OA\&AK*(WV*COS(NDO))*\$2)/W
BD\#(COF(2)-2:-FA*AK*WV*COS(WD)T/W
RHOEPRESS*.4895*144%/53.4/(TEMP+460.')/52:2-
CO=AK*2%/RHO/2,1511121- T-
WRITE(2;108)AD,BD
108 FORMAT (G8HO VEMICLEODRAGT EQUATION IN THENFORM ORAG LBFDWRA\&B.V

```

```

        IFtPA-1.01 10,0,5
        WRTTE(2:109)AK
    109 FORMAT(1OH AREA X KEF10.6);
    Gn` Tn%
    5'CONTINUE:
    WRTIE(2,110)AKIPA
    110 FORMAT(IOH
        K=F10.7:8\times27HPROJECTED FRONTAL AREATPT #F7.2)
        6 WRTIE(2,112)
            IF(PA-1%01)O,0,14
            WRIYE\2;116'CD,RHO
            G0 ro-1.5
    14 WRITE(2:115)CO,RNO
    15-CONT INUE
            GD=COF(1)/PA/AK
            AN=COF(2)/2%/PA/AK
            IF(GO=AN=AN)O,16,-17
            AL=SORT(AN*ANGGD)
            GC=(AV+AN)/AL'
            GO TO19.
        IG CONTINUE
        CC=1
            GC=1 ( AV+AN)
            GO TO.19
    I7 CONYINUE
    ATOSORT(GDOAN:AN)
    GC=(AV+AN)/AL
    I9 CrNTINUE
        AM=PA*AK*AL*15./22,/EM
        WRITE(2;118)
        WRI'EE(2;119.)
    119 FORMAT(62x1H2)
        WRITE!2,123)
    I23 FORMAT(85H OOLYNOMIAL CURVE FIT EXE((VEHICLE SPEEO + WINO SPEEDIM
1TLE/H), Y@DRAG FORCEGEF//)
DO 7.In.1.N
7 X(I)=(X(I)+WV*COS(WD))T**2
CALL'POLY (O,O,N,1,0)
ADmCOF(1)/W-
AK=COF(2)/PA
WQTIE(2:111)AD
IIT FORMATIS5HO
1REA.K-VXV/INH
IF(PA-1.O1)O.0,8
WT!TET2,10.9IAK
GO TO 9
8-MNTINUE

```


\section*{APPENDTX ET}

\section*{Constant porer curres}

This appondix concerns tho design of a drawing instrument guitable for aketching the constant power curves on an engine torque aseed graph (F2g. E3.1):

Since, for a constant power curve
\[
P=\text { constant }=T \times M \quad \text { A.E.1.1 }
\]
the relationship between ordinate (T) and abscisse (A) is
\[
T=\frac{\text { const }(\mu)}{n}
\]
- A.E.1.2
which describes a hyperbola.
Mabie and Ocvirk (102), in a chapter of their book ontitled "computing mechanisms", describes the device shown in Fig. A.E.L.l as an "inversion" mechanism. This has been remarranged to form Fig. E3.3. A atuay of the oimilar triangles (pdb) and (acp) in Fig. E3. 3 shows that the instrument will produce the relationship between torque (T) and engine opeed (N) given in equation A.E.1.2. The product (A.B) baing proportional to the constant power (P). It is not necessary to know the value of a constant power ine in Fig. E3. 2 in order to sketch in the optimum contral inne.

The geometry of the mechanism ghown in Fig. E3.3 may be modifiled at mut (0) in order to provide the different constant power curves. These curves are produced by placing the instrument onto a torque a speed plot with the mut (O) locked. A pencil point is placed in (Q).

Contiming in this fashion marks out a constant power curve. Unlocking mit (0) and re-positioning fulcrum point (p) before re-locking and repeating the operation produces a constant power curve of a different value.

It is envisaged that the instirument could be produced in plastic and that it would be of considerable benefit if a large number of torquenspeed plots required lines of constant power.

\section*{APPENDIX E2}

\section*{Computer program B184 for converting enpino characterdaticg}

Table A.E.2.1 lists computer program B184. The first "call" statement, after the DIMENSION AND DATA statements, calls up the clock built into the ICL 1905. Storage space II therefore contains the time. The second "call" statement opens up the graph plotter attached to the ICL 1905, ready for use. The program then arranges to execute \(\operatorname{RCASE}\) different sets of engine characterdatice. For each set, the engine capacity, expected maxdmam brake horsepower, whether the engine curvea are expressed as torque or brake mean effective pressure curves and flnally, whether the engine is a two or a fourstroke, must be supplied. The value of the expected maximum breke horsepower is used to set up the scale of the ordinate axds. It is not used in the calculations and so need not be accurate. The figure suppilied by the engine mampacturer is adequate.

After printing the information read in for reference purposes, the program calculates " \(C^{\prime \prime}\), fbeing the torque or b.m.e.p. conversion factor in order to obtain horsepower. Next, the minimum and maxdmam engine speed values on the exdsting engine torque (or b.i.e.p.) plot are read in.

The program arranges the characteristics tobe plotted suitable for a report of \(\mathrm{A}_{4}\) size. That is that YINS \(=10^{\prime \prime}\) and XIMS \(=6^{\prime \prime}\).

The I-acale is arranged to read from zero to a round figure appropriate to PMAX. Similarly, the X-scale is arranged to read from XIIN to a round figure appropriate to XMAX. The value of XMIN is then modified to give a round flgure at overy inch of the X-scale, i.e. the step length. If XIIN becomes negative in the process, the whole X-scale is then moved along until XMIV is :izaro. The program then calls UTP4A which drawe in the \(X\) and \(Y\) scales using the graph plotter.

First, the full throttle (or full rack) power curve is dealt with. The number of points (NP) in order to describe the curve is read in. This is followed by the full throttle speed and torque (or b.m.e.p.) points. These are then converted to power - apeed pointa uaing the conversion factor "C". These points are then supplied to the graph plotter (OTP4B) and the full throttle power line is plotted.

Next, the maber of s.f.c. 21 nes to be plotted is read in (NLINE). Then, for each s.f.c. line, the procedure is the same as for the full throttle line.

After the last a.f.c. line has been plotted, the clock is again consulted and the time taken, in seconds, is printed out. When all the engine characteristics have been processed, the program closes down the graphmplotter by calling UTPCL and stops.

A typical time for the execution of one set of engine characteristics is in the region of 180 to 220 seconds.

\section*{APPENDIX E3}

\section*{Engine charactoristic:}

This Appondix contains a manber of engine characteristics
converted from those in the Motor Industrys Research Association publications by uaing the computer program B184 listed in Appondix E2. Below are some notes on each of the plots.

\section*{Fire_A.E.A. 1}

Peugeot 404 , petrol engine, 1961 model
\begin{tabular}{llr}
capackty & \(98.77 \mathrm{in}^{3}\) & 1618 co \\
bore & 3.307 in & 84 mm \\
stroke & 2.874 in & 73 mm
\end{tabular}

4 - cylinder, overhead value, engine of compression ratio 7.3 to 1
having a single solex carburetter. The engine is water cooled.
Fig. A.E. 3.1 should be compared with the original torque - speed plot remproduced as Fige. E3.1 and B3.2.

\section*{Fife A.E.3.2}

1961, Volkswagon VW 1500, air cooled, petrol engine
\begin{tabular}{lll}
capacity & \(91.1 \mathrm{in}^{3}\) & 1493 cc \\
bore & 3.27 in & 83 mm \\
stroke & 2.72 in & 69 mm \\
four cylinders, 4 metroke, in horizontally opposed pairs.
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Fig. A.E.3.3} \\
\hline 1964, & Simca 1500, 4 otroke, petrol engine \\
\hline capacity & \(901 \mathrm{n}^{3} \quad 1475 \mathrm{cc}\) \\
\hline bore & 2.96 in 75.2 mm \\
\hline stroke & 3.27 in 83.0 m \\
\hline \multicolumn{2}{|l|}{Four cylinder, in line, vertical engine.} \\
\hline
\end{tabular}

\author{
FiginAce 3ik \\ M.S.O. Hankel rotary engine (petrol) KKM 502 \\ This engine is fitted into the W.S.O. "apder" aports car. The compression ratio of the ongane is 8.6 to 1. The load line on Fig. A.E. 3.4 is that of the spider, taken from Frode (100).
}

\section*{BiginA.E.3:5}
M.A.N. Multi-fual engine, type m246 MV3A. The engine is designed to run on both diesel fuel and petrol and employs the "Mn combustion system deaigned by Dr. J.S. Meurer. The curves in Fig. A.E.3.5 are a result of running the engine on diesel fuel.

The ongine characterlstics are umsual in that they resemble those of a compression igndition engine at 10 speed and those of a potrol engine at high engino specd. Nevertheless, the very low o.f.c. Plgures (0.400 maximum) and the very shallou gradient of the s.f.c. contours denotos the curves as basichaly those of a compression ignition ongine.

\section*{ETEA. A.En. 6}

Deuts F6L 514. Compression ignition engine
capacity 487 in \(^{3} \quad 7983\) cc
bore 4033 in \(\quad 110\) ma
atroke 5.52 in 240 man
aix cylinder, in-line, air-cooled, four stroke, overhead valve engine.
```

EMg. A.E.3.7
G.M.C. 6-7nE, 2-stroke, compression ignition engine
capacity 425.6 in 3 6974 ce
bore 4.25 in 108 mm
stroke 5.00 in 127 mm
compression ratio 17:1
six cylinders in-line, water cooled.

```

\section*{APPENMX E4}

\section*{Ges Rurbine component match (free porer turbine)}

Fig. A.E.4.1 show nchematically the arrengement of the freo power turbine machine and the mumber convention of the stations used in this Appendix Pig. A.E. 4.2 depicts the general shape of the pressure and temperature characteristics of the compressor, of the compressor turbine and of the free power turbine. An explanation for the general shape of these curves and the use of the non-dimensional parameters may be foundi in text books on gas ithirbine enginea.

The component match study is conducted by first superimposing the compressor-turbine characteristics onto the compressor character1stics in order to study the gas generator match, and then by superimposing the load and the free power turbine characteristics onto the compressor characteristics to obtain the full component match study.

Dealing firat with the gas generator component match .

\section*{Gas generator match}

The compatibility equations to be satisfied are
rotational speed
\[
\frac{N}{\sqrt{T_{t_{1}}}}=\frac{E}{\sqrt{T_{t_{3}}}} \times \sqrt{\frac{T_{t_{3}}}{T_{t_{1}}}}
\]
mass flow rate
\[
\frac{\dot{m} \sqrt{T_{t_{1}}}}{P_{t_{1}}}=\frac{\dot{m} \sqrt{P_{t_{3}}}}{P_{t_{3}}} \quad \times \sqrt{\frac{T_{t_{2}}}{P_{t_{3}}}} \cdot \frac{P_{t_{3}}}{P_{t_{1}}} \quad-4 . \mathrm{E.402}
\]
. power

where \(T_{t}=\) gas total temperature
\(\mathrm{C}_{\mathrm{p}}=\) specific heat at constant pressure
\(\eta_{m}=\) mechanical efficiency
\(P_{t}=\) total pressure
\(\mathrm{N}=\) rotational speed
\% = air mass flow rate
It is assumed that the mass flow rate of fuel equals the air mass flow rate necessary to cool the turbine bearings and rotors. The procedure now is to search along a particular \(N / \sqrt{T_{t_{1}}}\) Line on the compressor characteristics by trial and error methods in order to find the point which satisfies the three compatibility equations for a specified value of \(T_{t_{f}} / T_{t_{2}}\). Repeat for other values of \(\mathrm{T}_{\mathrm{t}_{3}} / \mathrm{T}_{\mathrm{t}_{1}}\) on the compressor characteristic.

The resulting graph, Pig. A.E.4.3, represents the gas generator
component match. This gives the all important inlet to turbine temperature for high compressor efficiency, without compressor surge. The second stage is to deal with the free power turbine and the load.

\section*{Power Turbine Match}

The procedure is, from a plot of the required load horsepower against power turbine output shaft speed, to obtain the equilibrium running line on the gas generator characteristics.

It is usual to neglect any "ram" pressure in the engine air inlet and to assume that the air is expanded down to ambient pressure over the fie power turbine (1.e. \(P_{t_{5}}=P_{t_{1}}\))

Again, the three compatibility equations are those of speed, mass flow rate and power.

The procedure from here is to search along a \(T_{t_{3}} / T_{t_{2}}\) line to find the equilibrium running point. In detail, this may be achieved by
a) guess a point on a particular \(\mathrm{I}_{\mathrm{t}_{3}} / \mathrm{T}_{\mathrm{t}_{2}}\) line on the gas generator characteristics.
b) read off \(P_{t_{3}} / P_{t_{1}},\left(\pm \sqrt{T_{t_{1}}}\right) / P_{t_{1}}\) and \(N / \sqrt{T_{t_{2}}}\)
c) from equations A.E.4.1 and A.E.4.2 evaluate
\(\mathrm{N} / \sqrt{\bar{T}_{t_{3}}}\) and \(\left(\mathrm{Am} \sqrt{\tilde{T}_{t_{3}}}\right) / P_{t_{3}}\)
d) hence fix the point on the compressor-turbine characteristics and obtain \(\frac{P_{t_{3}}}{P_{t_{4}}}\) and \(\frac{T_{t_{4}}}{T_{t_{3}}}\) from \(\frac{T_{t_{3}}-T_{t_{4}}}{T_{t_{3}}}\)
e) now obtain

and
\[
\frac{m \sqrt{T_{t_{4}}}}{P_{t_{4}}}=\frac{\sqrt{P_{t_{3}}}}{P_{t_{3}}} \times \sqrt{\frac{T_{t_{4}}}{I_{t_{3}}}} \frac{P_{t_{3}}}{P_{t_{4}}}
\]
P) the guessed point may now be located on the power turbine characteristics, from which the speed of the output shaft \(\left(\mathrm{L}_{\mathrm{p}}\right)\) may be found from
\[
N_{p}=\frac{\mathbb{P}_{p}}{\sqrt{T_{t_{4}}}} \sqrt{\frac{T_{t_{4}}}{T_{t_{3}}}} \sqrt{\frac{T_{t_{3}}}{T_{t_{1}}}} \cdot T_{t_{1}}
\]
g) and the power output from

\[
\frac{T_{t_{4}}}{T_{t_{3}}} \frac{T_{t_{3}}}{T_{t_{1}}}
\]
\[
\text { _ A. } 5.4 .7
\]
b) If thia does not equal the powar required by the load at output shaft speed (\(n_{p}\)), try another point on the same \(T_{t y} / T_{t_{1}}\) line until equilibrium point is found.
1) Repeat with other \(T_{t_{3}} / T_{t_{1}}\) lines until, finally, the "equilibrium running line" is deternined on the gas generator characteristics as shown in Fig. A.E. 4.40

Fig. A.E. 4.4 shows at a glance the overall component match in relation to the load and the risk of compressor surge during operation.

\section*{APRESDIX FP \\ Engine - torgue converter match procedure}

\section*{Introductory Remarks}

The engine speed is not related directiy to vehicle speed uith an automatic transmission. It may however, be calculated using the torque converter characteristics and the ongine characteristics sketched in Flg. A.F.I.1. The K -factor and torque ratio (TR) characteristics are unique for a particular torque converter and describe fully its performance. The engine torque curve is shown and, for convenience, a development of the torque curve known as the engine R-factor against speed curve is shoun. The engine K-factor'is defined as
engine \(K\)-factor \(=\) engine speed rev/min
\(\sqrt{\text { net engine output torque lbf } \mathrm{ft}}\) and forms the link between the engine and the torque converter characteristics. The torque converter K-factor and torque ratio terms are defined in Part \(F_{0}\) section 2.

\section*{The "Direct" Method}

The engine and torque converter are considered as a conbined unit, called the power unit. The torque against apeed characteristic of the output shaft from the power und is calculated as follows.

Assuming steady state runcing,
1) taking speed ratio.(SR) as the independent variable, aplit the speed ratio range (1.e. zero to unity) into small steps.
2) for each speed ratio, consult the torque converter characteristics and read off the K-factor.
3) transfer this to the engine K-factor curve and read off engine speed (\(\mathrm{N}_{\mathrm{S}}\))
4) hence calculate ongine torque
5) consult the torque converter characteristics and read off torque ratio (TR)
6) multiply engine torque and torque ratio to give output shaft torque
7) multiply engine speed by speed ratio to give outpat shaft speed (\(\mathrm{N}_{0}\))
8) hence obtain the steady state output shaft torque against speed characteristic of the power unit
,The vehicle performance may then be calculated in the normal way provided that some allowance is made for the mismatch between engine and torque converter caused by the accelerating engine.

\section*{Other Mothods}

Methode, other than the Runge-Kutte-Call and the "Direct" method described above, may be employed in the vehicie performance calculation of automatic transmisaioned vehicles. Two such methods are desmribed belou as "Iterative Approach No. 1" and "Iterative Approach No. \(2^{\text {". As }}\) their description implies, they are trial and error type solutions. Their inclusion here is largely for completeness, they have little to recomend themaince the engine and torque converter matching procedure cannot be separated fron the vehicle performance calculations.

\section*{Iterative Approach Fo. 1}

The engine and the torque converter are treated as separate and distinct units. If the vehicle is accelerating (under full throttle), at a particular speed \(\nabla \mathrm{mile} / \mathrm{h}\). and hence with a known, specified gear ratio,
1) calculate torque converter output shaft speed (\(\mathrm{N}_{0}\)) from \(\nabla_{0}\) gear ratio, drive axle ratio and rolling radius of tyres.
2) guess engine speed (\(\mathrm{H}_{\mathrm{E}}\)) and engine acceleration (dN) (dt)
3) calculate speed ratio across torque converter (\(\mathrm{N}_{0} / \mathrm{H}_{\mathrm{E}}\)) and net engine output torque (after allowing for engine inertia, front pump otc.)
4) ovaluate engine K-fector
5) putting engine K-factor \(=\) torque converter K-factor, read off speed ratio (SR) from torque converter characteriatic.
6) from (SR) and \(N_{0}\), evaluate engine speed \(\mathbb{N}_{E}\). If \(\mathbb{F}_{E}\) is different from the value assamed above at (2), assume a now value and go back to (2)
7.) having obtained \(N_{E}\) and spoed ratio (SR) to the required accuracy, read off the torque ratio (TR) from the other torque converter characteristic.
8) hence calculate torque convertor output torque and so calculate the vehicle acceleration and time during speed interval dV.
9) knowing the time interval and the ongine speed at the previous vehicle speed (V-dV), caiculate engine acceleration.
10) if ongine acceleration is different to that assumed at (2) above, assume a now value and go back to (2).

1i) If the engine acceleration is within a specified tolerance, routine ends and the vehicle acceleration calculated above is declabed the true value.

\section*{Iterative Approach No. 2}

This is a variation on Iterative Approaches H.O. 1. The speed ratio of the torque converter is taken as the independent variable and the speed ratio range split up into steps.
1) for each speed ratio, consult the torque converter curves and read off the K-factor and the torque ratio (TR)
2) guess engine acceleration and so calculate the engine inertia torque.
3) construct the engine K-factor against speed curve from the engine torque curve and the engine inertia torque.
4) From this curve and the torque converter \(\mathbb{R}\)-factor, calculate engine speed.
5) hence calculate engine torque output from the engine.
6) multiply this by torque ratio (IR) to give the output torque from the torque converter
7) calculate vehicle acceleration
8) hence recalculate engine acceleration and go back to (2) until the required accuracy is obtained.

\section*{APPENDIX F2}

\section*{Relationship botweon percentare change in output shaft speod}

\section*{and torque due to change in engine torque}

Consider a particular apeed ratio of the torque converter.
Hence (SR) and torque ratio (TR) are known and are fixed.
Let the engine torque drop by a small propartion (a), thus
\[
T_{E_{I}}=T_{E_{I}}=0^{x(1-a)} \quad \text { A.F.2.1 }
\]
where \(a=\frac{\Delta^{T_{B}}}{{ }^{T_{B_{I}}}=0}\)

From the two torque converter characteristics are obtained the two sets of relationships

Now, if equilibriun running is assumed such that the torque converter K-factor characteriatic is unique, then the torque converter K-factor \(=\) the ongine K-factor.

\section*{Hence,}

- A.P. P. 2.6
therefore, uaing equation A.F. 2.1
\(\mathbb{N}_{B_{I}}={ }^{N_{E_{I}}}=0 \quad x \sqrt{T_{B_{I}}=0} \quad x(1-a)^{\frac{1}{2}}\)
aince a \(\mathrm{Cc}^{\mathrm{I}} \mathrm{I}_{0}=\) Qhe flrst terv of the binomial expreseion may be used, honco,
\(H_{E_{I}}=N_{T_{I}}=0^{x\left(1-\frac{a}{2}\right)}\)
- A.F.2.7
putting equation A.F.2.7 into A.F.2.5 yields
\(N_{O_{I}}=S R \times N_{E_{I}=0} \times\left(1-\frac{a}{2}\right)\)

Uaing equation A.P.2.4 glves
\(N_{O_{I}}=N_{O_{I}=0} \times\left(1-\frac{a)}{2}\right) \quad\) A.F. 2.8

Also, putting equation A.F.2.1 into A.F. 2.3 yields
\(T_{O_{I}}=T R \times T_{E_{I}=0} \times(1-a)\)

Using equation A.F.2.2 gives
\[
T_{O_{I}}=T_{O I}=0^{\times(1-a)}
\]

Equation A.F. 2.9 shows that the percentage change in torque converter output torque equals that of the engine torque, that is that
\[
\frac{\Delta T_{O_{I}}}{T_{O_{I}}=0}=\frac{\Delta T_{R}}{P_{B_{I}}}=0
\]

Equation A.F.2.8 shows that the percentage change in torque converter output speed is half that of the engine torque, that is that
\[
\frac{\Delta N_{0}}{{ }_{W_{O}}=0}=\frac{\Delta T_{E}}{2 \cdot T_{E_{I}}}
\]

It follows therefore that
\[
\frac{\Delta N_{0}}{N_{O_{I}}=0}=\frac{\Delta^{T_{O_{I}}}}{2 \cdot T_{O_{I}}}
\]
A.P.2.12

\section*{APPENDIX RS}

\section*{Calculation of the change in output torque due to an}

\section*{accelerating engine}

Referring to Fig. P4. 3 in the main text, a drop in engine torque causes the curve to move down and to the left. The relationship e between these two points A and B is known (see Appendix E2). However, it is required to find an expression for the torque at point C. Thus
\[
T_{O_{C}}=T_{O_{A}}-\Delta T_{O_{I}}-\Delta T_{O_{M}}
\]

The terms in this expression are defined in Fig. Fl. 3 and section FL.

How, Fig. F4. 3 shows that, if the change is small,
\[
\Delta T_{O_{M}}=-\frac{\left(\delta T_{0}\right)}{\left(\frac{\left.\delta_{0}\right)_{B}}{}\right.} \times \Delta N_{0}
\]

Note that (\(\partial_{T_{0}}\)) is negative, usually. (\(\mathrm{JNO}_{0}\))
1.e
\[
\Delta T_{O_{M}}=-\left(\frac{\left.\partial^{T}\right)_{0}}{\left.\partial N_{O}\right)_{B}} \times N_{O I}=0 \times \frac{\Delta B_{a}}{\mathbb{N}_{O_{I}}=0}\right.
\]
therefore, using equation A.F.2.12 in Appendix F2

How, the slope of the curve at point B is not known directiy. It is not exactly equel to the slope of the curve through \(\Lambda\), which is known, because the percentage change in apeed is half that of torque. Uoing reasoning identical to that in Appendix F4, it can be shown that the slope of the curve through \(A\) equals that of a matching study curve through point D in Fig. F4.3. \(A\) emall error oniy is incurred in using the known slope through \(A\) because the correction for miematch (\(\Delta^{T}{ }_{o_{M}}\)) is small anyway.

Therefore, it may be said that

It is now necessary to establish a relationship between the vehicle acceleration (\(f\)) and the decrease in engine torque output due to its own acceleration.

The angular acceleration of the torque converter output shaft is related to vehicle acceleration by
\[
\frac{\partial N_{0}}{\partial t}=\frac{P \times D A R_{X} G R}{r_{x}}
\]
\[
\text { - A.F. } 3.4
\]

Now the ongine acceleration is given by
\[
\frac{\partial N_{B}}{\partial t}=\frac{\partial N_{B}}{\partial N_{0}} \times \frac{\partial N_{0}}{\partial t}
\]
A.F.3.5

The engine inertia torque is given by
\[
\Delta T_{E}=I_{0} \times \frac{\partial R_{E}}{\partial t} \quad \text { A.P.3.6 }
\]

Combining equations A.F.3.4, A.F.3.5 and A.F. 3.6 gields the relationship
\[
\Delta T_{\mathrm{E}}=I_{0} \times \frac{\partial B_{\mathrm{E}}}{\partial \mathrm{~N}_{0}} \times \frac{I \times \mathrm{DAR} \times \mathrm{GR}}{r_{r}} \quad \longrightarrow \mathrm{~A} \cdot \mathrm{~F} \cdot 3.7
\]
finally, using equations A.F.2.2 and A.F.2.3 in Appendix F2,
\[
\Delta T_{O_{I}}=T R \times\left\{I_{0} \times\left(\frac{\left.\partial H_{E}\right)}{\partial H_{0}}\right) \times \frac{f \times D A R \times G R}{r_{r}}\right\}
\]

Hence \(\Delta T_{O_{I}}\) is expressed in terms of vehicle acceleration (f) Since the change in torque due to mis-match (\(\Delta T_{O_{M}}\)) is related to \(\Delta T_{0_{I}}\), see equation A.F.3.3 above, that too may be expressed in terms of vehicle acceleration.

The term (\(\partial N_{E} / \partial N_{0}\)) in expression \(\Lambda . F \cdot 3.8\) should be, the slope of the curve at point C in Fig. P4.4.

It is now posaible to proceed further and obtain the output torque from the torque converter making due allowance for the accelerating ongine.

Substituting equation A.F.3.8 first into A.F.3.3 and thon into A.F.3.1 gielde
\[
\begin{aligned}
& \text { - A.F. } 3.9
\end{aligned}
\]
this may be remarranged to isolate the vehicle acceleration.

Now the term \(\left(\frac{\partial N_{E}}{\partial F_{0}}\right)\) in equation A.F.3.10 is known only for point \(A\) in F1g: F4. 4 Appendix F4 shows that the slope at point A equals the slope at point B. However, the term \(\left(\frac{\partial \mathrm{N}_{\mathrm{E}}}{\left(\frac{\mathrm{N}_{0}}{0}\right)}\right.\) refors to the slope at
point C. Using the known slope introduces a small error. The error is snall because FLg . F4. 4 shows that wen the slope is large at high engine speeds, there is very little difference in the slopes of the two curves. When the engine speed is lows the slopes are small anfway.

However, it is possible to make some allowance for this error when calculating the vohicle performance. Having calcplated the output torque from the torque converter (\(\mathrm{T}_{\mathrm{o}_{\mathbf{c}}}\)) as described in section \(E 4\), using the approximate slope \(\left(\partial \mathrm{N}_{\mathbb{E}} / \partial \mathrm{N}_{0}\right)_{A}\), the term

is known.
Using equation A.F.2.8 in Appendix P2 and the known polynomial expression governing the slope of the curve, the slope at \(C\) may be found from

It is not necessary to iterate, since the effect of the difference is very amall. It is suffiaient to note the difference and to edd it onto the calculated slope at the next vehicle speed.

Thus the error in one step length is applied to the next. Inclusion of this procedure altered the calculated tine to \(90 \mathrm{mile} / \mathrm{h}\). of a vehicle from 53.0597 seconds to 53.0733 seconds, a negligible difference.

\section*{APPENDIX R 2}

Hate of change of engine speed with output shaft speed:

With reference to FIg. P4.4 in Section 4, the purpose of this appendix is to show that the slope of the curve through B is the same as the slope of the carve through A.

The known polynomial expression linking engine speed and
torque converter output shaft speed is

thus
\(\left(\frac{\partial B_{E}}{\left(\partial H_{0}\right)_{A}}=b_{2}+2 . b_{3} \cdot H_{O_{I=0}}+3 . b_{4} \cdot N_{O_{I=0}}^{2}+\right.\) etc. \(-n . F .4 .2\)
now, from Appendix F2, equations A.F.2.7 and A.P.2.8
\[
E_{E_{I}}=N_{I_{I=0}} \times\left(1-\frac{a}{2}\right)
\]
and
\[
N_{O_{I}}=N_{O_{I=0}} \times\left(1-\frac{a}{2}\right)
\]
hence, combining A.F.2.7 and A.F.4. 2 and using A.F.2.8
\[
\frac{\partial H_{B_{I}}}{\partial N_{O_{I}}}=B_{2}+2 \cdot b_{3} \cdot \frac{B_{O_{I}}}{1-\frac{a}{2}}+3 \cdot b_{4} \cdot\left(\frac{\left(B_{1}\right.}{\left(1-\frac{a}{2}\right)}\right)^{2}+e t o
\]
that is that

Comparing equation A.F. 4.4 with A.F. 4.2 shows tho right hand sides to be identical. Hence the slope at \(B=\) slope at \(A\).

\section*{APPETIDX \(\mathrm{P5}\)}

Lhating of computer mrogran B767

Automatic yahicle performance profram
using_Rungemunten-Ca12.
together vith sample output
```

        MAS:ER B967
        HIMENSION X(10),GCS(9门),PUMP(10),ET(10).YK(10I,TR(40),ESPED(2000)
        COMMON ET.TK,TR,X,GCS,DUMP,DAR,RR,AD,BD,AK,WV,W,AIW,AIE,KA,A,B,H,X
    IK.NG.NEY,NTK,NTR,PY,VBS,GCT,TTI,GR,JJJ,RMIN.ESDED,KKK
    *PI=3.14159265359
        CAl.l ITIME i[1)
        WRITE(2,431)!1
        20}\mathrm{ CONTINUE
        16 CONTINUE
        J"25
        WR!TE(2;100;
        OEAD(Y-10%)
        WRTTE(?:109:
        WRITE(2;902)
    1. READ(1,103)NET
    2 QEAD(1-404)(ET(IY,I=1TNET),VBSSAIESRMIN
        WKITE(2,906)
        WRITE(2,128;(ET(I)OIE{,NET)
        WRITE(2.129)
        WRITE(Z,907)VBSIAIE
        WRITE(2,929)
        FF(Jこ2)26.26.0
        3 READ(1,103)NTK
        GREAD(9,104)(TK(1),1:1%NTK)
        WRITE(2.108)
        WRITE(2;'28)(TK(I)TIEq,NTK)
        WRITE(2,929)
        TFrJ-4)26:26.0
    5 READ(1,903)NTR
    6 READ(1,104):TR(I),I=9,NTR)
        WRITE(2,109;
        WRITE(2,9 28:(TR(I),T={'NTR)
        WRITE(2.129)
        IF(J=6)26,26,0
    9 CONTINUE
    7-PEAD(1.103)NG,NPUMP
    10%CONPINUE
    8 READ(1,904)(X(I),I=I,NO)
        WRITE(2;110)(X(I),I=1,NG)
        WRTTE(2,1?9)
        IF(J-8)26,26,0
        READ(9,104) (GCS(1),I#{,NG-1)
        WR!TE(2;111)(GCS(1),I=1,NG-1)
        WRTTE(2,120)
        1FiJ-10)26,26,0
    11 QEAD(1.904)DAR,RR,ATWWPSI,TI
        AIW=AIW*PSI*DAR*DAR
        IF(J-19)26.26:0
    ```


\section*{In=14-19}

WRIYE(2,131;14,15,16
WRITE(2, 102)
WRITP(2,120)TS
\(J=0\)
READ (1. 125) J
TE(J)48,48,0
WRITE(?;126)
WRTTE(2.105)
60 T0 \(1,2,3,4,5,6,7,8,9,10,11,12,13.14,15,16), \mathrm{J}\)
48 WRITE (2,127)
COP
100- CORMAT \(20 \times 38 H G . G\). LUCAS DEPT OF TRANSPORT TECHNOLOGY/20X37HLOUGHBO! IOUGH UNIVERSITY OF TECHNOIOGYT//18X39HVEHICLEDERFORMANCE =AUTOMA 2TIC GEARBOX/25X22HUSING RUNGE-KUTYA-GILET
109 FORMAT \({ }^{-18 O H}\)
1
402 FORMAT (9Н017)
403 EOMMAT (10:0)
904 EORMAT (20FO. 0)
105 EORMAT (1HO/5XTHNEWRUN/i)
106 FORHAT (OBH ENGINE TORQUE LBFFT FPOLY((FNGINESPEED)/1000) COEF १FICIENTS ARE)
107 FORMAT (34 HAXIMUM ALCOWABLE ENGINESPEEDEFO.1,9H REV/MIN/29H E 1NGINF INERTIA SLUG SQFT a F8.4/)
108"FORMAT (G3H TORQUE CONVERTER K-FACTOR a POLV(SPEED RATIO) COEFFIE GNTS ARE)
109 EORMAT (\(67 H\) TORQUE CONVERTERTORQUE RATTO ZPOIY(SPEED RATIO) COE -1EFTENTS ARE)
190 FORMAT (16M GEAR RATIOS ARET1×5G17.8)
199 ORMAT(42H SDECIFIED GEAR CHANGE SPEEDS (MTLE/H) ARE/9X5G17.6)
 \(19.5 / 40 H^{-}\)TOTAL ROAD UHEEL INERTIA (SLUG SOFT) GF90.5.5X29HTYRE GRO ZWYH FACTOR = F94.10\%
 1) 51? ?. \(1.25 \times 3\) F10.3\%

114-FORMAT SOH VEHICLE DRAG COEFFICIENTS ARE3F10-5\%19MSPECIFIEDGRAD -TENT1OXZ3HCOEFFICIENTOF FRICTION10X2?HGEAR CHANGF YIME (SEC)/3(FY 29.6;12X)1)

115 FORMAT (34H INITIAL TEST SPEED (MTLETH) =F9.2I29H FINAL TEST SPEED 1 (MILE/H) =F10.2/23H WIND SPEED (MILE/H) =E9.2//)
116 FORMAT (\(30 \times 25 H F R O N T\) WHEEL DRIVE VEHICLEIT)
197 RORMAT (30 3 24HREAR WHEEL DRIVE VENICLE/I)
918 EORMAT \(20 \times 6\) IH* VEKICLE MAY SLID DOWNHIIL WITH HANDBRAKE ONLY \(S\) 1ET * * *i)
19 FORMAT \(20 \times 46 H * *\) VEHICLEMAY OVERTURN IN FTEST GEAR*** * 1\()\)
120 FORMAT (\(10 \times 48\) HTIME TO SDEED ON SPECIFIEDGRADTENT (SECONDS) = F 12.4 175
```

        129 FORMATE3TH MAXIMUM BHP FROM TORQUE CONVERTER = F91.3.34H AT TC OL
            1TPITT SPEED (REV/MIN OF F{2.2/1)
        122 fOPMAT(53H ENGINE MAXIMUM SPFED LIMITS MAXIMIM VEHICLE SPEED TOFq
            1.2.8H MJ(E/H%)
        123 FORMATC34H YAXIMUM VEHICLE SPEED (MILE/H' = E90.2%)
        124 FORMAT ( 26H DEGREEOF UNDERGEARING= F90.57)
        125-0RMAT(1?)
        926-EORMAT(!H9)
        127-FORMAT(10X9FHEND OF CALCULATIONS)
        428 FORMAT(9`56i7.9)
        129 FORMAT(1HO)
        40 FORMAT (3OH TURBINE INERTIASLUG`SQ.FT=F9.4/T
        131 FORMAT(418)
        500-EORMAT(10E12.5)
            END
    END OF SEGMENY: LENGTH 714, NAME B167

```
\(\qquad\)
SUBROUTINE TIM (TS,VI,VZ,G,CE)DIMEN8ION-X(10), GCS(4-A), PUMP(10), EF(10), YK(10),TR(10), ESPED(2000)DIMENSION Y(2), DY(2).O(2)
OLMENSION-OS(6), AZ (6)
DATA DS(-1)-DS(2).DS
 3MILE 1
 NDIS \(=9\)
 -ISFt 0 。
 GYMO-
 DISFO.
 \(T S=0\).
 \(Q R=X(-4)\)
 \(M=2\)
 JPRINTEO
 \(A H=-1\)
 IN:T=O
 \(K K K=0\)
 GCS(NG) \(=V 2 * 1-2\)
 \(C C=S Q R+(-9-6 * G)\)
 - \(W=C \cdot(F W+(A+B)\)
 IF (KA) \(0,-4-3,13\)
 A8) B
 \(\mathrm{HH}=\mathrm{m}\)
 HO-PO-4
93-CONTINUE
 \(A\) - \(\mathrm{A}-\mathrm{A}\)
 \(\mathrm{HH}=\mathrm{H}\)
 4.4-C=AB+CE+HH*G
 DO-70-1-1-200
 70 ESPED(I)=A -
 \(-v(-1-)=\forall 1\)
 WRITE(-2-400)
 51-RERMIN/4000
 -F (R-EO:O.)RE. 1
 \(\mathrm{J}=0\).
 50 CONTYNUE
 PEEEP(1)
 \(00-52-1=2-4 E F\)
 52 PEGYE EFF(I) -R** (I-q)
 TPK=TK(A)
 \(-R X=R R *(1,+X K *(Y(1)+F(-4)-900 .-)-)\)
 \(-O G R=G R \neq D A R / R X\)
 SREY(1)*22.*OGR/15./R/4000.-10.1*30.
 DO. 53-1:2;NTK

53－TPK \(=T P K+T K(-i) * S R * *(-I-9)\)
FPUMP＝DUMP（－6）
D0－56－1－0． 10
54－FPUAP FFPUMP＋PUMP \((-1)-R * *(1-6)\)
rPK \(=(R * 1000--1 T P K) * * 2\)
IF \((-5=-4 \rightarrow-0,0-5.5\)
1F（TEのFPUMD－FPK）56，0，0
\(R=R+,-2\)
\(J=9\)
GO－TO－50
55 CONTINUE
IF－TPK \(+F P H M-T=-57-58,59\)
56－CONTINUE
IFRR－RMY－N／－1000ッ）50ッ0． 59
\(R=R+\cdots 2\)
fO－TO－50
\(59 \cdots R=R=0.4\) \(J=10\)
60－70－50
\(57-R=R+-0.05\)
58－CONTINUE

60－CONTINUE
Ft－A．Sㅜㅜㄷ－（－2）
\(J \cdot J \cdot J=I \cdot N \cdot T+1\)

INIT－T－NIT＋A
IF（－KKK－4）0－6， 64,62
ESPEO（INIT）\(=Y(-2) * 30 \div 1-P \cdot\)
DO－63－1＝2－NG
IF（Y（1）－GE－GCS（I－1）－AND－Y（9）－LTGGS（－I－）－GRaX（－1－）
63－CONTINUE
1－F（GV）0，64．0
1－F－GY－GR） 0.64 .0
GYEGR
00－T0－59
64 CONTINUE
\(G Y=G R\) ．
－fF（Y（9）－V2．）60，0．0
KKK＝4
INITEO
AREXCI）
GYOC．
v（1）evi
\(r(2)=0\) ．
601060
61 CONTINUE
62 CONTINUE
```

    nO 65 102,NG
    IF(Y({),GR.GCS(I-1).ANO.Y(1).LT.OCS(I)) ORaX(I)
    65 CONTINUE
    AN=O.
    1F(GY)0.66.0
    TF-(GY= 6R)0TS6%0
    AN=GC-7
    URIFE{-2,IOA-GR,GY
    66-GY=GR
    Y(-2)-Y-(-2)-AN
    ```

```

    IF(ND-S-6)0,67,67
    I-(-DI-6F-DS(NOIS)-)67,0%0
    DD-(OI8F=DS(NDIS)-)-(OISF=DI-SFL
    TSD=Y(-2)-DD*(Y(2)-T(-AS-T)
    VD=Y(-T)-BD*AH
    WRITE(-2,-107)
    WR-ITE(-2,406)-A.O(UDIS)TVD,TSD
    WRITE(-2-10.7)
    ND-S=NO-I-S+4
    67 CONTINUE
    OISFL=OISF
        1F((-NIT=1)/10-JPRINT)68,0,68
        JPRINF=\PRIN+7+1
        WRITE(-2,1-05)Y(1)-Y(-2),DISF,ESPED(INIT)
    68-CONTINUE
        I-F(Y(4)-VZ) 60,0,0
        TB=Y(-2)
        RETURN
    ```


```

        -2EV/MINf/A
    101-FORMAT-1H020X23H*\cdots-GEAR-CHANGE-10-14HRAT10-18 NOW-F40-6.1
        1-3H-19-14-F-4-4-4
    102-FORMAT(4HO1OX3THENGINE-SPEED ABOVEMAXIMUM OF-F9.1.9H -REV/MIN/5X
    ```

```

    103 FORMAT-(-HI/25X2ZHSET SPEEO-UNOBFAINABLE/-/5\times2OHTIME-SO-FAR-SEC-
        1.F-4-2-.3/-
    104 FORMAF(1HO35\times22H***WHEEL SPIN-N**)
    905-EORMATHF4-2,-2,F22;4,F-20-4,F4.3-2)
    406-FORMAT(1OX,-A8,21HMMARK-PASSED SPEED=F8.2,31-H-MILE/H, .. TIME APP
        4ROX-SEC-F}=40,2
    107 FORMAT-(YHO)
    500 FORMAT(MOEQ-2.5)
        END
    ```
 ENO-OF-SEGMENTTEENGTH- \(754 \%\) NAME—TIM
```

        SUBROUTINE DERY (M,Y,DV)
        NIMENSION X:90),GCS`10), DUMP(90), ET(10),TK(10N,TR(10), ESDED(2000)
        DIMENSION Y(M),DY(M)
        TOMMONET,TK,TR,X,GOS,DUMP,DAR,RR,AD,BD,AK,WV,W,AIW,AIE,KA,A,B,H,
        IK,NG,NET,NTK,NTR,PI,VBS,GCT,TI,GR;JJJ,RMIN,ESDED,KRK
    ```

```

        OGR=GR*NAR/RX
        NFEW*(G-ADD+Y(1)*BD)+AK*(Y(q)+WV)-*ABS(Y(1) +WV)
        IF(Y(1)-GCS(1)) 0,2,2
        ATENG-1
        GOTO 3
        2CONTINUE
        DO 4-I=2.NG
        IF!Y(1-GEGGCS(I-1).AND:Y(9)
        4 CONTINUE
        3 CONTINUE
        TEF=.98* . 96-.000316*V(1)-.0000058*Y(1)*y(1))*(.99758*(1. -.007*A1
        1-.0000870*V(9)*2.08**AI)
        EM■W/32:2+AIW/RR/RR+TI*TEF*OGR**2
        1F(KKK-1)0,1,1
        R=Y(2)*30./D\/1000.
        TEEET(9)
        DO 5 I=2,NET
    ```
 5 TE=TE+ET(I)*R**(I-4)
 FPUMDEPUMD (6)
 D06-5:7;10
 6 FPUMP F FPUMP + PUMP (I) *R**(I-6)
 SR的(9)/Y(2)-22.*OGR/45.
 TPKETK(1)
 DO 7 I2INTK
 7-TPK=TPK+TK(1) *SR**(I-9)

 TRKロTR(1)
 DO 8-I:2;NTR
 8 TRK=TRK-TR(I) ©SR** (\(1=1\))
 IF (YRK.LE. 1 .) TRK \(=1\).
 -TET=TRK*TPK*OGR*TEF
 PPIMDEDIMD(1)
 SEY(1) t?2./15, 由DAR/RXI9000
 \(s=s+30 . / \mathrm{Pi}\)
 n0 9-1 \(=2.5\)

 \(D Y(Z)=(T E-F D U M P-T P K) / A I E \star E M+2\) ? . 195./(TFT-DF)
 RETURN
 1 CONTINUE

 Sas* \(\mathbf{3} 0\),ipt
 RPUMD=PIMP(1)


```

