

This item was submitted to Loughborough's Research Repository by the author. Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Supplementary information files for Dinuclear Palladium(II) and Platinum(II) Complexes of a Readily Accessible Bicyclic Diphosphane

PLEASE CITE THE PUBLISHED VERSION

LICENCE

CC BY 4.0

REPOSITORY RECORD

Edgar, Mark, Mark Elsegood, Pingchuan Liu, Christopher R Miles, Martin Smith, and Shimeng Wu. 2022. "Supplementary Information Files for Dinuclear Palladium(ii) and Platinum(ii) Complexes of a Readily Accessible Bicyclic Diphosphane". Loughborough University. https://doi.org/10.17028/rd.lboro.20080034.v1.

European Journal of Inorganic Chemistry

Supporting Information

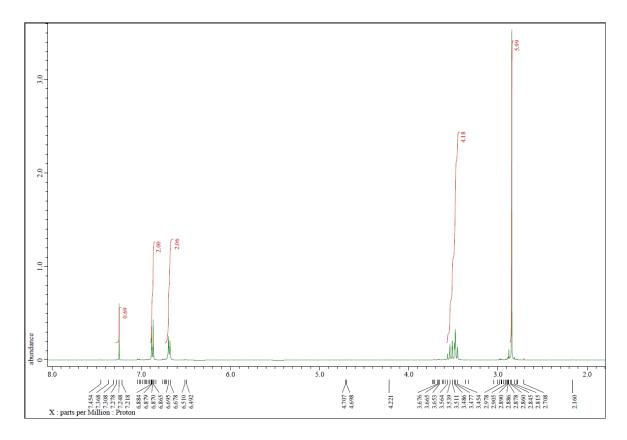
Dinuclear Palladium(II) and Platinum(II) Complexes of a Readily Accessible Bicyclic Diphosphane

Mark Edgar, Mark R. J. Elsegood, Pingchuan Liu, Christopher R. Miles, Martin B. Smith,* and Shimeng Wu

Supporting Information

List of contents

	dichioropaniadium(ii) compiexes 4a and 4b	2
Single crystal X-r	ay data for 4a·CH ₂ Cl ₂	33
NMR spectra		
Figure S1	¹ H NMR spectrum of compound P–P(NMe ₂) (recorded in CDCl ₃).	3
Figure S2	¹³ C{ ¹ H} NMR spectrum of compound P-P(NMe₂) (recorded in CDCl ₃).	4
Figure S3	$^{31}P\{^{1}H\}$ NMR spectrum of compound P–P(NMe₂) (recorded in CDCl ₃).	5
Figure S4	¹ H NMR spectrum of compound 1a (recorded in CDCl ₃).	6
Figure S5	³¹ P{¹H} NMR spectrum of compound 1a (recorded in CDCl ₃).	7
Figure S6	¹ H NMR spectrum of compound 1b (recorded in CDCl ₃).	8
Figure S7	³¹ P{¹H} NMR spectrum of compound 1b (recorded in CDCl ₃).	9
Figure S8	¹ H NMR spectrum of compound 1c (recorded in CDCl ₃).	10
Figure S9	³¹ P{¹H} NMR spectrum of compound 1c (recorded in CDCl ₃).	11
Figure S10	¹ H NMR spectrum of compound 2b (recorded in CDCl ₃).	12
Figure S11	³¹ P{ ¹ H} NMR spectrum of compound 2b (recorded in CDCl ₃).	13
Figure S12	¹ H NMR spectrum of compound 2b (recorded in CDCl ₃).	14
Figure S13	³¹ P{ ¹ H} NMR spectrum of compound 2c (recorded in CDCl ₃).	15
Figure S14	¹ H NMR spectrum of compound 2d (recorded in CDCl ₃).	16
Figure S15	³¹ P{ ¹ H} NMR spectrum of compound 2d (recorded in CDCl ₃).	17
Figure S16	¹ H NMR spectrum of compound 2e (recorded in CDCl ₃).	18
Figure S17	³¹ P{ ¹ H} NMR spectrum of compound 2e (recorded in CDCl ₃).	19
Figure S18	¹ H NMR spectrum of compound 3a (recorded in CD ₃ CN).	20
Figure S19	$^{31}P\{^{1}H\}$ NMR spectrum of compound 3a (recorded in CD ₃ CN).	21
Figure S20	¹ H NMR spectrum of compound 3b (recorded in CD ₃ CN).	22
Figure S21	³¹ P{¹H} NMR spectrum of compound 3b (recorded in CD ₃ CN).	23
Figure S22	¹ H NMR spectrum of compound 3c (recorded in CD ₃ CN).	24
Figure S23	³¹ P{¹H} NMR spectrum of compound 3c (recorded in CD ₃ CN).	25
Figure S24	¹ H NMR spectrum of compound 3d (recorded in CD ₃ CN).	26
Figure S25	³¹ P{ ¹ H} NMR spectrum of compound 3d (recorded in CD ₃ CN).	27
Figure S26	¹ H NMR spectrum of compound 4a (recorded in CDCl ₃).	28
Figure S27	³¹ P{ ¹ H} NMR spectrum of compound 4a (recorded in CDCl ₃).	29
Figure S28	¹ H NMR spectrum of compound 4b (recorded in CDCl ₃).	30
Figure S29	³¹ P{ ¹ H} NMR spectrum of compound 4b (recorded in CDCl ₃).	31
X-ray figures		
Figure S30	Molecular structure of 3a·12CD ₃ CN in the solid state. All hydrogen atoms and some solvents	
	have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd(1)–P(1) 2.2220(17),	
	Pd(1)–P(2A) 2.2337(17), Pd(1)–Cl(1) 2.3410(18), Pd(1)–Cl(2) 2.3501(17), P(1)–P(2) 2.187(2);	
	Cl(1)-Pd(1)-Cl(2) 94.72(7), P(1)-Pd(2)-P(2A) 98.56(6).	32
Figure S31	Packing plot of 3a·12CD ₃ CN in the solid state showing packing arrangement.	32
Figure S32	Molecular structure of 4a·CH ₂ Cl ₂ in the solid state. All hydrogen atoms and solvents have	
	been omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd(1)–P(1) 2.254(3),	
	Pd(1)–P(2) 2.239(3), Pd(1)–Cl(1) 2.365(3), Pd(1)–Cl(2) 2.342(3); P(1)–Pd(2)–P(2) 93.82(10),	
	Cl(1)-Pd(1)-Cl(2) 90.88(10).	33
		3.


Experimental for dichloropalladium(II) complexes 4a and 4b

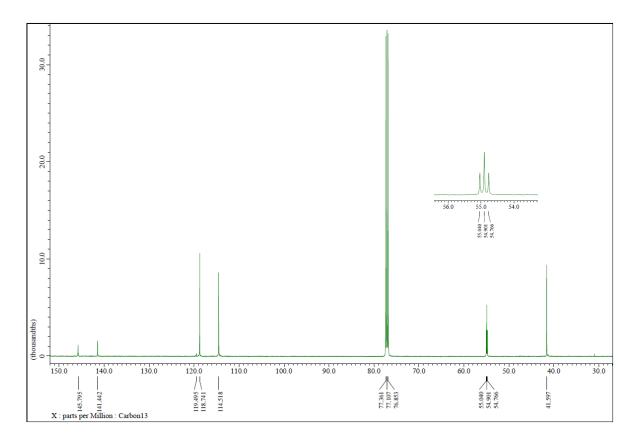
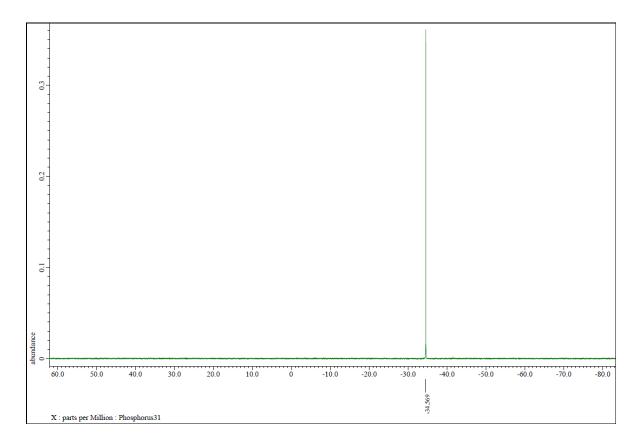
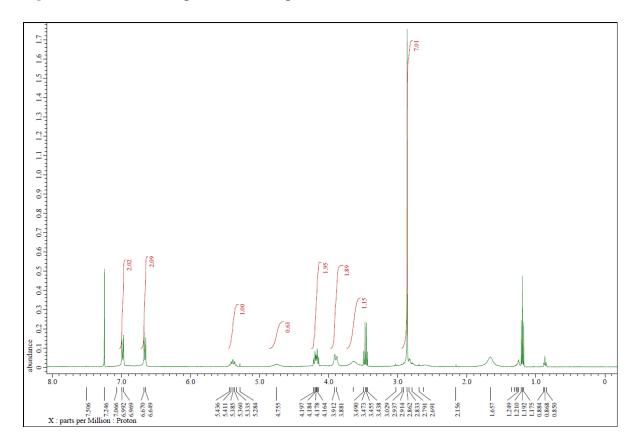
Synthesis of **4a**: To [PdCl₂(η⁴-C₈H₁₂)] (0.027 g, 0.098 mmol) in CH₂Cl₂ (10 mL) was added Ph₂PCH₂N{C₆H₄(4-NMe₂)}CH₂PPh₂ (0.052 g, 0.098 mmol), preformed from 2 equiv. of Ph₂PCH₂OH and H₂NC₆H₄(4-NMe₂), and the solution stirred for 1 h. The volume of CH₂Cl₂ was reduced in vacuo to approx. 1–2 mL. Addition of diethyl ether (20 mL) and hexanes (20 mL) afforded solid **4a** which was collected by suction filtration and dried. Yield 0.058 g, 83%. Selected data for **4a**: ¹H (500 MHz): δ 7.86–7.82 (8H, m, arom. *H*), 7.46 (4H, dd, *J*_{HH} 8.2, 6.7 Hz, arom. *H*), 7.37 (8H, dt, *J*_{HH} 7.6, 2.2 Hz, arom. *H*), 6.67 (4H, d, *J*_{HH} 8.2 Hz, arom. *H*), 3.84 (4H, t, ²*J*_{PH} 3.1 Hz, C*H*₂), 2.88 (6H, s, C*H*₃). ³¹P{¹H} (202 MHz): δ 10.1 ppm. FT–IR (KBr): *ν*_{PdCl} 310, 293 cm⁻¹. Anal. Calcd for C₃4H₃4Cl₂N₂P₂Pd·CH₂Cl₂ (%): C, 52.89; H, 4.57; N, 3.52. Found: C, 53.04; H, 4.55; N, 3.50.

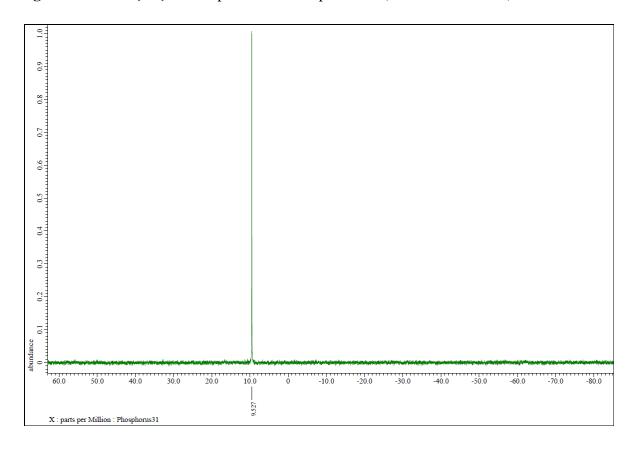
Synthesis of **4b**: To [PtCl₂(η⁴-C₈H₁₂)] (0.035 g, 0.094 mmol) in CH₂Cl₂ (10 mL) was added Ph₂PCH₂N{C₆H₄(4-NMe₂)}CH₂PPh₂ (0.050 g, 0.094 mmol), preformed from 2 equiv. of Ph₂PCH₂OH and H₂NC₆H₄(4-NMe₂), and the solution stirred for 1 h. The volume of CH₂Cl₂ was reduced in vacuo to approx. 1–2 mL. Addition of diethyl ether (20 mL) and hexanes (20 mL) afforded a yellow solid **4b** which was collected by suction filtration and dried. Yield 0.045 g, 65%. Selected data for **4b**: 1 H (500 MHz): δ 7.85–7.80 (8H, m, arom. *H*), 7.46 (4H, t, J_{HH} 7.0 Hz, arom. *H*), 7.38 (8H, t, J_{HH} 6.8 Hz, arom. *H*), 6.68–6.65 (2H, m, arom. *H*), 6.57 (2H, d, J_{HH} 9.1 Hz, arom. *H*), 3.88 (4H, dd, $^{3}J_{PtH}$ 50.0. $^{2}J_{PH}$ 5.0 Hz, CH₂), 2.87 (6H, s, CH₃). 31 P{ 1 H} (202 MHz): δ –6.1 ppm, $^{1}J_{PtP}$ 3400 Hz. FT–IR (KBr): ν_{PtCl} 317, 290 cm⁻¹. Anal. Calcd for C₃4H₃4Cl₂N₂P₂Pd·0.5CH₂Cl₂ (%): C, 49.26; H, 4.20; N, 3.33. Found: C, 49.27; H, 4.32; N, 3.13.

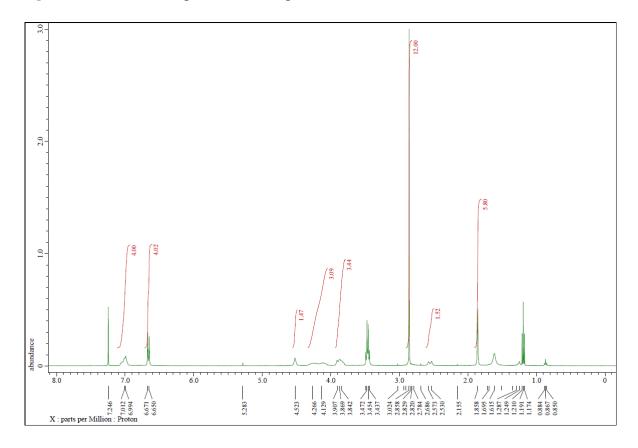
NMR data

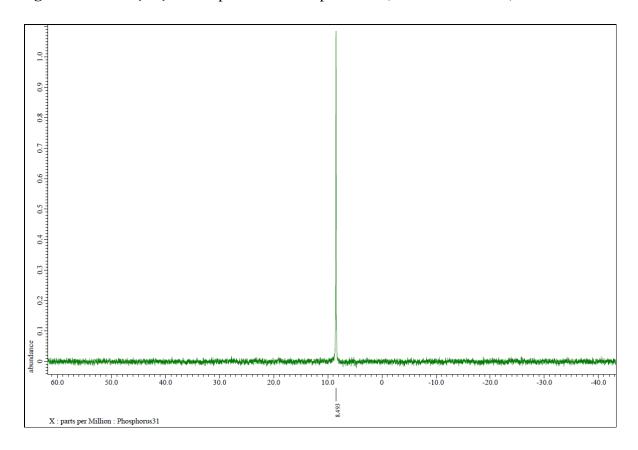
Figure S1 ¹H NMR spectrum of compound **P–P(NMe₂)** (recorded in CDCl₃).

Figure S2 ¹³C{¹H} NMR spectrum of compound **P–P(NMe₂)** (recorded in CDCl₃).


Figure S3 $^{31}P\{^{1}H\}$ NMR spectrum of compound **P-P(NMe₂)** (recorded in CDCl₃).


Figure S4 ¹H NMR spectrum of compound **1a** (recorded in CDCl₃).


Figure S5 ³¹P{¹H} NMR spectrum of compound **1a** (recorded in CDCl₃).

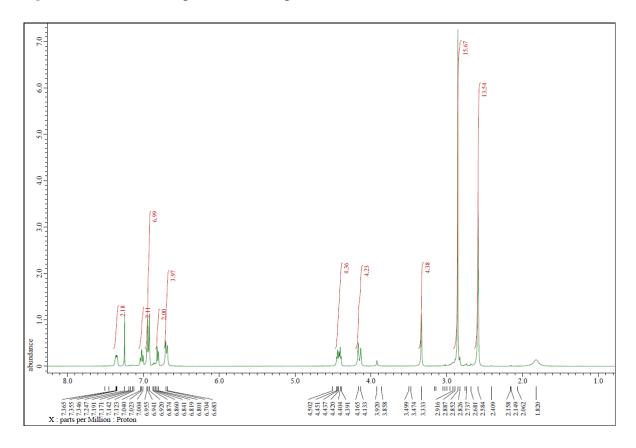

Figure S6 ¹H NMR spectrum of compound **1b** (recorded in CDCl₃).

Figure S7 31P{1H} NMR spectrum of compound **1b** (recorded in CDCl₃).

Figure S8 ¹H NMR spectrum of compound **1c** (recorded in CDCl₃).

Figure S9 ³¹P{¹H} NMR spectrum of compound **1c** (recorded in CDCl₃).

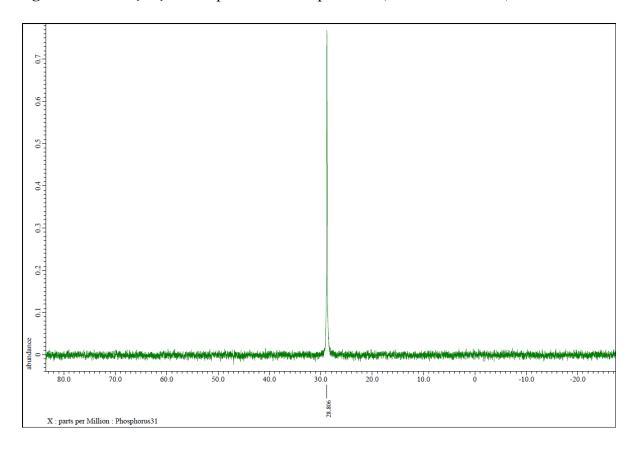
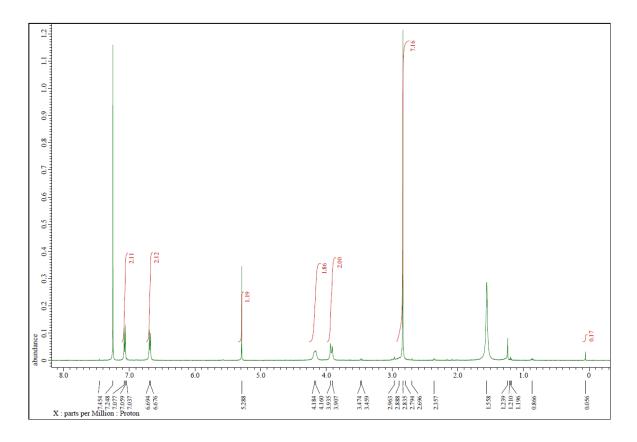
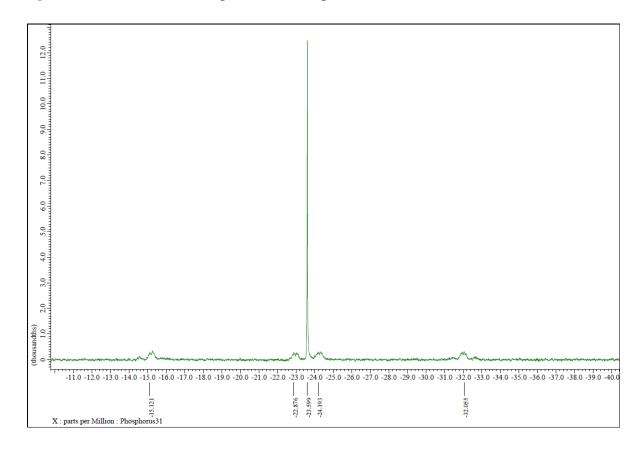
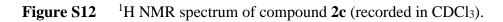
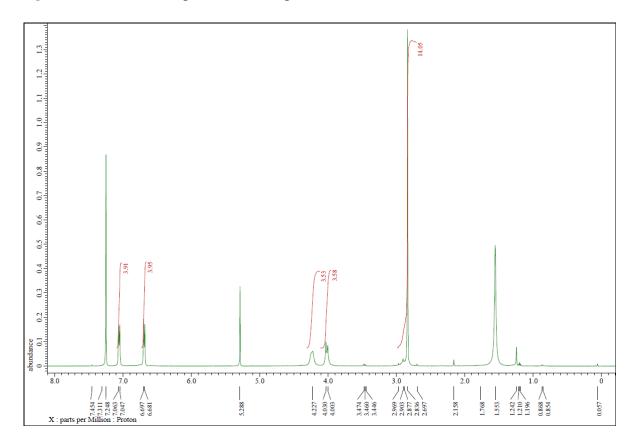
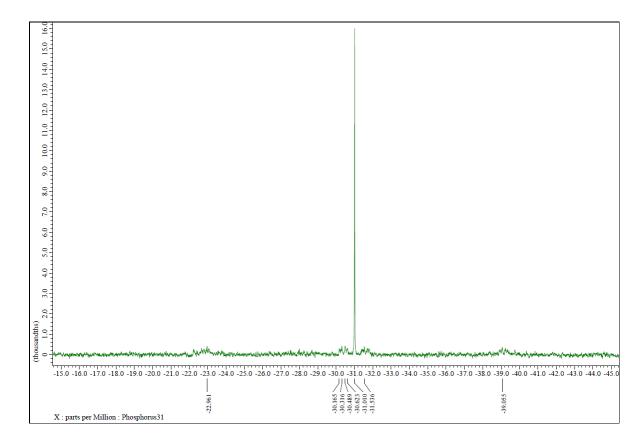
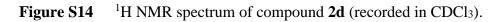
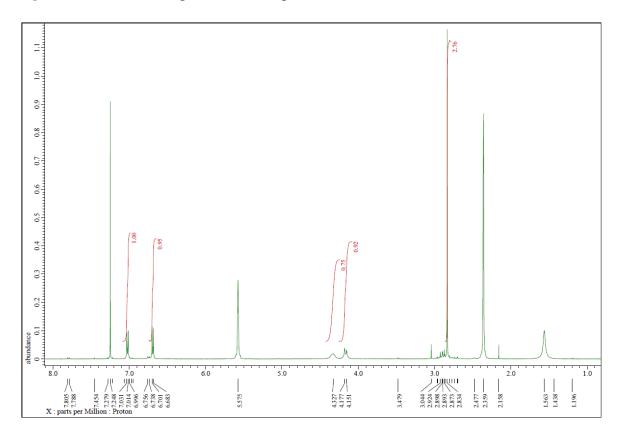


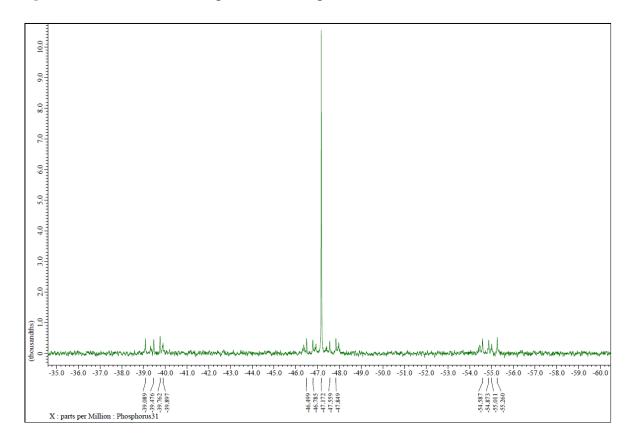
Figure S10 ¹H NMR spectrum of compound 2b (recorded in CDCl₃).

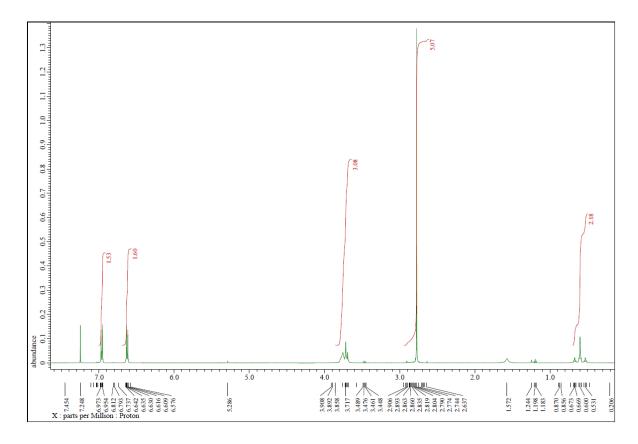





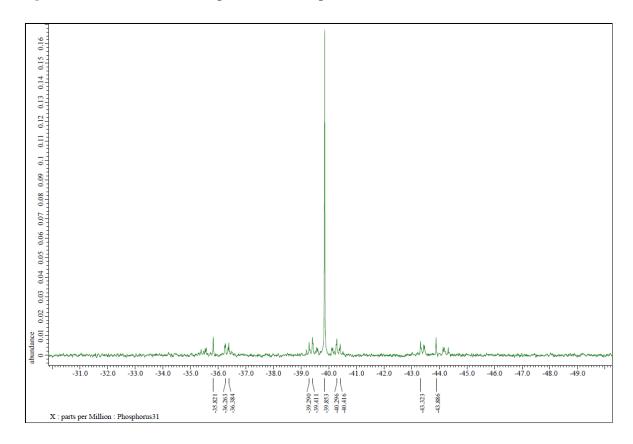

Figure S11 ³¹P{¹H} NMR spectrum of compound **2b** (recorded in CDCl₃).

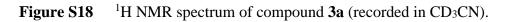


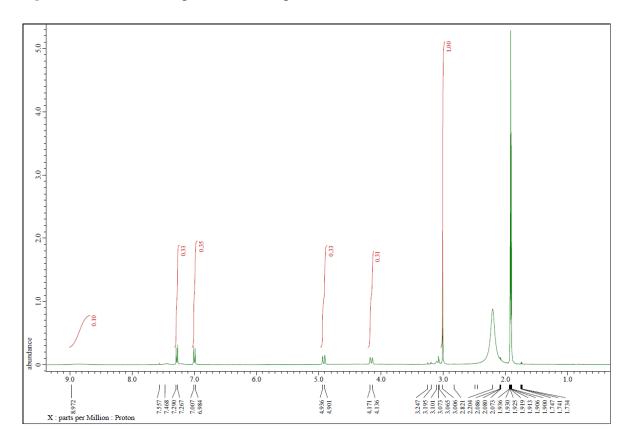


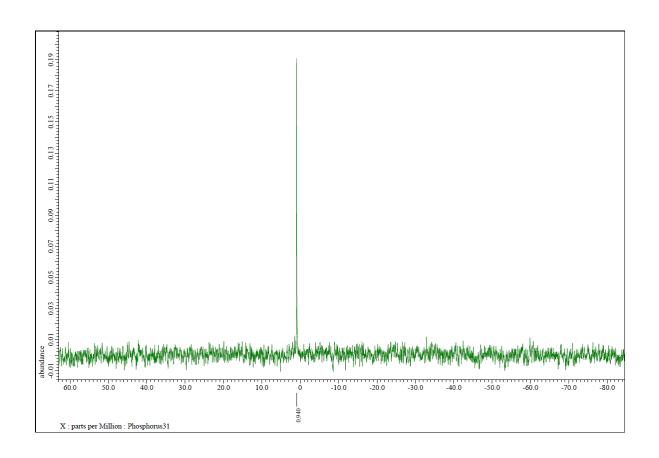

Figure S13 ³¹P{¹H} NMR spectrum of compound **2c** (recorded in CDCl₃).




Figure S15 ³¹P{¹H} NMR spectrum of compound **2d** (recorded in CDCl₃).




Figure S16 ¹H NMR spectrum of compound **2e** (recorded in CDCl₃).


Figure S17 ³¹P{¹H} NMR spectrum of compound **2e** (recorded in CDCl₃).

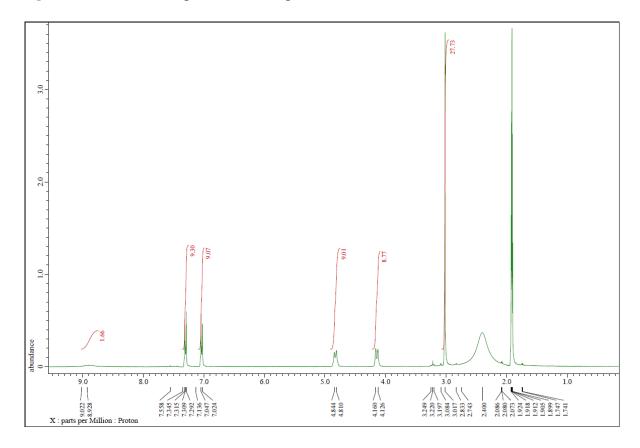
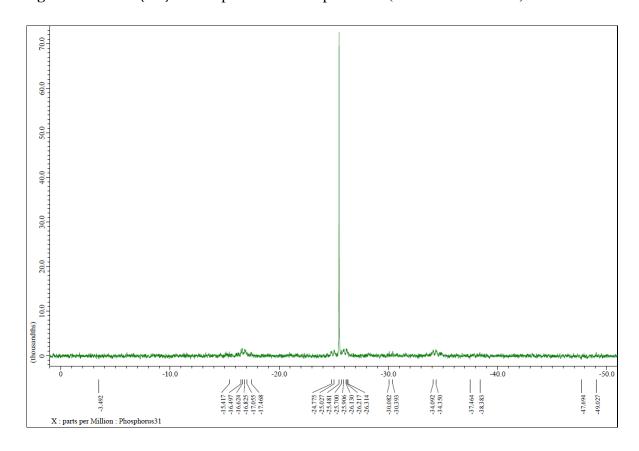
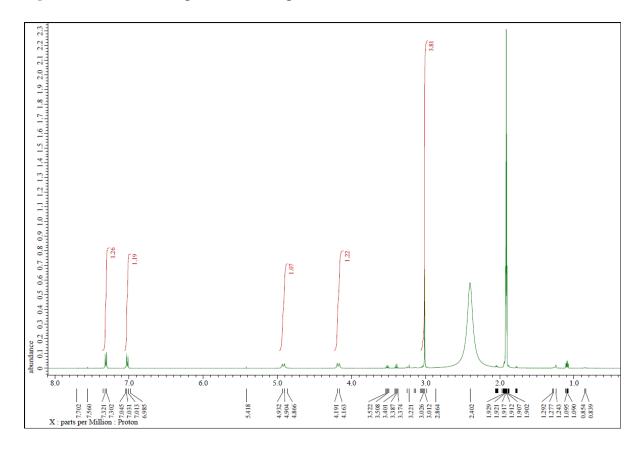
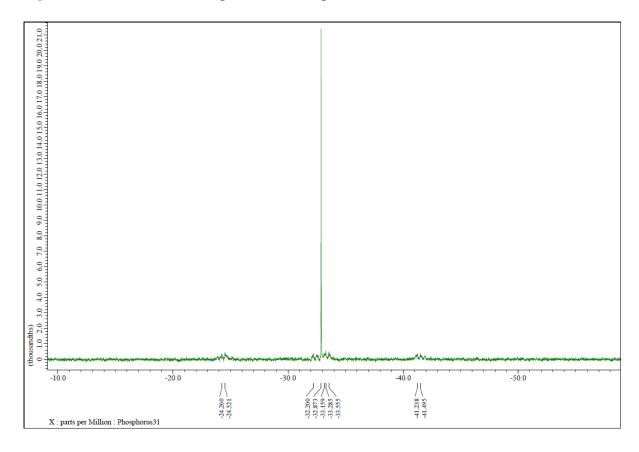
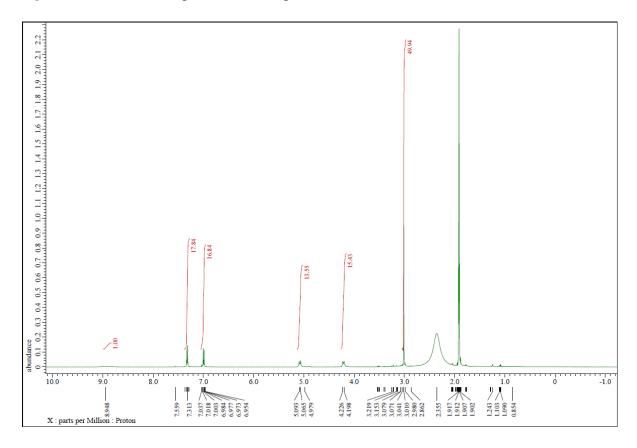


Figure S19 ³¹P{¹H} NMR spectrum of compound **3a** (recorded in CD₃CN).

Figure S20 ¹H NMR spectrum of compound **3b** (recorded in CD₃CN).

Figure S21 ³¹P{¹H} NMR spectrum of compound **3b** (recorded in CD₃CN).


Figure S22 ¹H NMR spectrum of compound 3c (recorded in CD₃CN).

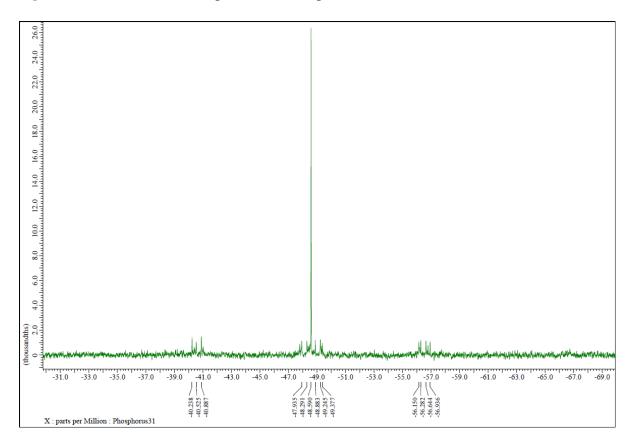
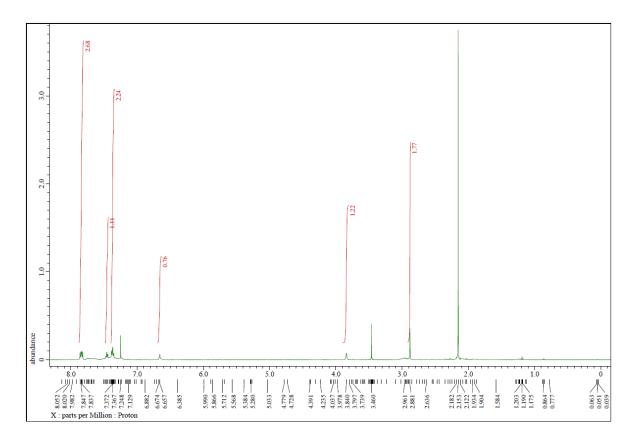
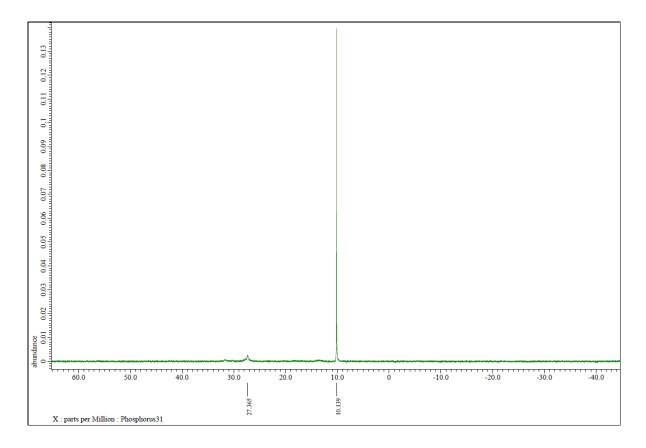
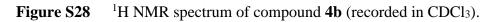
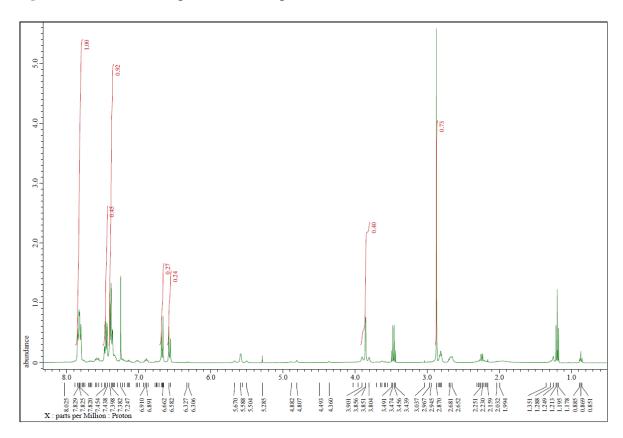

Figure S23 ³¹P{¹H} NMR spectrum of compound **3c** (recorded in CD₃CN).

Figure S24 ¹H NMR spectrum of compound **3d** (recorded in CD₃CN).

Figure S25 ³¹P{¹H} NMR spectrum of compound **3d** (recorded in CD₃CN).

Figure S26 ¹H NMR spectrum of compound **4a** (recorded in CDCl₃).

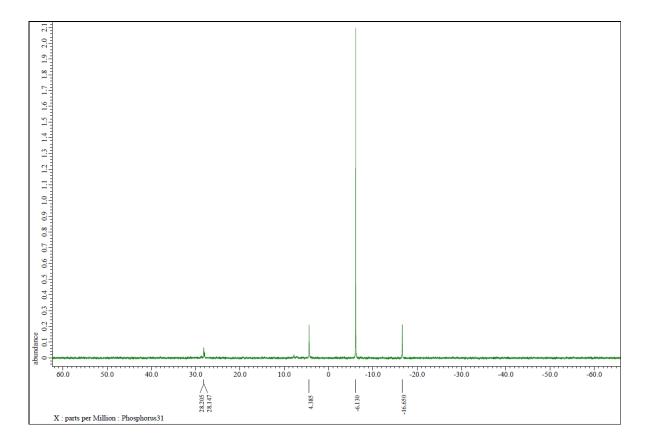
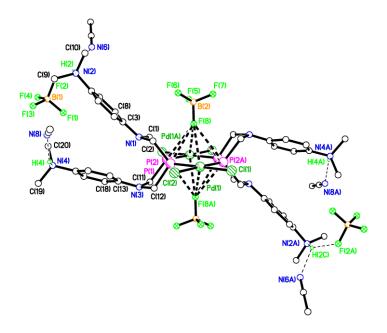
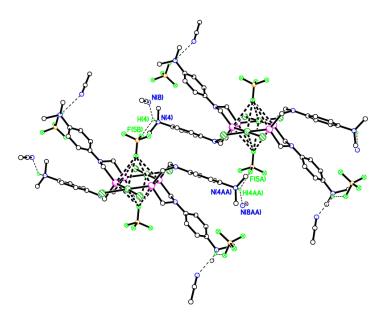
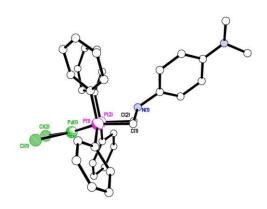

Figure S27 ³¹P{¹H} NMR spectrum of compound 4a (recorded in CDCl₃).

Figure S29 ³¹P{¹H} NMR spectrum of compound **4b** (recorded in CDCl₃).

X-ray figures

Figure S30 Molecular structure of **3a**·12CD₃CN in the solid state. All hydrogen atoms and some solvents have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd(1)–P(1) 2.2220(17), Pd(1)–P(2A) 2.2337(17), Pd(1)–Cl(1) 2.3410(18), Pd(1)–Cl(2) 2.3501(17), P(1)–P(2) 2.187(2); Cl(1)–Pd(1)–Cl(2) 94.72(7), P(1)–Pd(2)–P(2A) 98.56(6).


Figure S31 Packing plot of 3a·12CD₃CN in the solid state showing packing arrangement.

Single crystal X-ray data for 4a·CH₂Cl₂

Suitable crystals of $4a\cdot \text{CH}_2\text{Cl}_2$ were obtained by slow diffusion of hexanes onto a CH₂Cl₂ solution of $4a\cdot \text{CH}_2\text{Cl}_2$: C₃₄H₃₄Cl₂N₂P₂Pd·CH₂Cl₂: $M_r = 794.80$, yellow plate, 0.53 x 0.28 x 0.06 mm³, monoclinic, space group $P2_1/c$, a = 9.852(2), b = 12.814(3), c = 27.315(6) Å, $\beta = 98.547(4)^\circ$, V = 3410.0(13) Å³, T = 150(2) K, Z = 4, $\lambda = 0.71073$ Å, $\mu(\text{Mo-K}_{\alpha}) = 0.98$ mm⁻¹, θ range for data collection = 1.8–25.0°, 5951 independent reflections measured, $R_{\text{int}} = 0.042$, $d_{\text{calc}} = 1.548$ g cm⁻³, R1 = 0.099 (for 5114 data with $I > 2\sigma(I)$), wR2 = 0.246 (for all data), and 399 refined parameters, largest difference map features between 3.05 and –2.85 e/Å³.

Figure S32 Molecular structure of $4a \cdot \text{CH}_2\text{Cl}_2$ in the solid state. All hydrogen atoms and solvents have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd(1)–P(1) 2.254(3), Pd(1)–P(2) 2.239(3), Pd(1)–Cl(1) 2.365(3), Pd(1)–Cl(2) 2.342(3); P(1)–Pd(2)–P(2) 93.82(10), Cl(1)–Pd(1)–Cl(2) 90.88(10).

