This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Supplementary information files for Dinuclear Palladium(II) and Platinum(II) Complexes of a Readily Accessible Bicyclic Diphosphane

PLEASE CITE THE PUBLISHED VERSION

LICENCE
CC BY 4.0
REPOSITORY RECORD
Edgar, Mark, Mark Elsegood, Pingchuan Liu, Christopher R Miles, Martin Smith, and Shimeng Wu. 2022.
"Supplementary Information Files for Dinuclear Palladium(ii) and Platinum(ii) Complexes of a Readily Accessible Bicyclic Diphosphane". Loughborough University. https://doi.org/10.17028/rd.Iboro.20080034.v1.

European Journal of Inorganic Chemistry

Supporting Information

Dinuclear Palladium(II) and Platinum(II) Complexes of a Readily Accessible Bicyclic Diphosphane

Mark Edgar, Mark R. J. Elsegood, Pingchuan Liu, Christopher R. Miles, Martin B. Smith,* and Shimeng Wu

Supporting Information

List of contents

Experimental for dichloropalladium(II) complexes $\mathbf{4 a}$ and $\mathbf{4 b} \quad 2$
Single crystal X-ray data for $\mathbf{4 a} \cdot \mathbf{C H}_{2} \mathbf{C l}_{\mathbf{2}}$
NMR spectra
Figure S1 $\quad{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{P}-\mathbf{P}\left(\mathbf{N M e}_{2}\right)$ (recorded in CDCl_{3}). 3
Figure S2
Figure S3
Figure S4
Figure 55
Figure S6
Figure S7
Figure S8
Figure S9
Figure S10
Figure S11
Figure S12
Figure S13
Figure S14
Figure S15
Figure S16
Figure S17
Figure S18
Figure S19
Figure S20
Figure S21
Figure S22
Figure S23
Figure S24
Figure $\mathbf{S 2 5}$
Figure S26
Figure S27
Figure S28
Figure S29

X-ray figures

Figure S30

Figure S313
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{P}-\mathbf{P}\left(\mathbf{N M e} \mathbf{N}_{2}\right)$ (recorded in $\left.\mathrm{CDCl}_{3}\right)$. $\quad 4$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{P}-\mathbf{P}(\mathbf{N M e} 2)$ (recorded in $\left.\mathrm{CDCl}_{3}\right)$. 5
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a}$ (recorded in CDCl_{3}).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{1 a}$ (recorded in CDCl_{3}). 7
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 b}$ (recorded in CDCl_{3}). 8
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{1 b}$ (recorded in CDCl_{3}). 9
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 c}$ (recorded in CDCl_{3}). 10
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{1 c}$ (recorded in CDCl_{3}). 11
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 b}$ (recorded in CDCl_{3}).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 b}$ (recorded in CDCl_{3}). 13
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 b}$ (recorded in CDCl_{3}). 14
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 c}$ (recorded in CDCl_{3}). 15
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 d}$ (recorded in CDCl_{3}). 16
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 2d (recorded in CDCl_{3}). 17
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 e}$ (recorded in CDCl_{3}). 18
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 2 e (recorded in CDCl_{3}). 19
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 a}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$). 20
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{3 a}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$). 21
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 b}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$). 22
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{3 b}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$). 23
${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 c (recorded in $\mathrm{CD}_{3} \mathrm{CN}$). 24
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{3 c}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$). 25
${ }^{1} \mathrm{H}$ NMR spectrum of compound 3d (recorded in $\mathrm{CD}_{3} \mathrm{CN}$)26
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{3 d}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$). 27
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 a}$ (recorded in CDCl_{3}). 28
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{4 a}$ (recorded in CDCl_{3}). 29
${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 b}$ (recorded in CDCl_{3}). 30
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{4 b}$ (recorded in CDCl_{3}). 31

Molecular structure of $\mathbf{3 a} \cdot 12 \mathrm{CD}_{3} \mathrm{CN}$ in the solid state. All hydrogen atoms and some solvents have been omitted for clarity. Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$]: $\operatorname{Pd}(1)-P(1) 2.2220(17)$, $\mathrm{Pd}(1)-\mathrm{P}(2 \mathrm{~A}) 2.2337(17), \mathrm{Pd}(1)-\mathrm{Cl}(1) 2.3410(18), \mathrm{Pd}(1)-\mathrm{Cl}(2) 2.3501(17), \mathrm{P}(1)-\mathrm{P}(2) 2.187(2)$; $\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2) 94.72(7), \mathrm{P}(1)-\mathrm{Pd}(2)-\mathrm{P}(2 \mathrm{~A}) 98.56(6)$.
Figure S32 Molecular structure of $\mathbf{4 a} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the solid state. All hydrogen atoms and solvents have been omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: $\mathrm{Pd}(1)-\mathrm{P}(1)$ 2.254(3), $\mathrm{Pd}(1)-\mathrm{P}(2) 2.239(3), \mathrm{Pd}(1)-\mathrm{Cl}(1) 2.365(3), \mathrm{Pd}(1)-\mathrm{Cl}(2) 2.342(3) ; \mathrm{P}(1)-\mathrm{Pd}(2)-\mathrm{P}(2) 93.82(10)$, $\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2) 90.88(10)$.

Experimental for dichloropalladium(II) complexes 4a and 4b

Synthesis of 4a: To $\left[\mathrm{PdCl}_{2}\left(\eta^{4}-\mathrm{C}_{8} \mathrm{H}_{12}\right)\right](0.027 \mathrm{~g}, 0.098 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{~N}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(4-\mathrm{NMe}_{2}\right)\right\} \mathrm{CH}_{2} \mathrm{PPh}_{2}(0.052 \mathrm{~g}, 0.098 \mathrm{mmol})$, preformed from 2 equiv. of $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\left(4-\mathrm{NMe}_{2}\right)$, and the solution stirred for 1 h . The volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reduced in vacuo to approx. $1-2 \mathrm{~mL}$. Addition of diethyl ether (20 mL) and hexanes (20 mL) afforded solid $4 \mathbf{a}$ which was collected by suction filtration and dried. Yield 0.058 g , 83%. Selected data for $4 \mathrm{a}:{ }^{1} \mathrm{H}(500 \mathrm{MHz})$: $\delta 7.86-7.82\left(8 \mathrm{H}, \mathrm{m}\right.$, arom. H), $7.46\left(4 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}}\right.$ $8.2,6.7 \mathrm{~Hz}$, arom. H), $7.37\left(8 \mathrm{H}, \mathrm{dt}, J_{\mathrm{HH}} 7.6,2.2 \mathrm{~Hz}\right.$, arom. $\left.H\right), 6.67\left(4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 8.2 \mathrm{~Hz}\right.$, arom. H), $3.84\left(4 \mathrm{H}, \mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{PH}} 3.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.88\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(202 \mathrm{MHz}): \delta 10.1 \mathrm{ppm}$. FT-IR $(\mathrm{KBr}): v_{\text {PdCl }} 310,293 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pd} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (\%): C, $52.89 ; \mathrm{H}, 4.57$; N, 3.52. Found: C, 53.04; H, 4.55; N, 3.50.

Synthesis of 4b: To $\left[\mathrm{PtCl}_{2}\left(\eta^{4}-\mathrm{C}_{8} \mathrm{H}_{12}\right)\right](0.035 \mathrm{~g}, 0.094 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{~N}\left\{\mathrm{C}_{6} \mathrm{H}_{4}\left(4-\mathrm{NMe}_{2}\right)\right\} \mathrm{CH}_{2} \mathrm{PPh}_{2}(0.050 \mathrm{~g}, 0.094 \mathrm{mmol})$, preformed from 2 equiv. of $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\left(4-\mathrm{NMe}_{2}\right)$, and the solution stirred for 1 h . The volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reduced in vacuo to approx. $1-2 \mathrm{~mL}$. Addition of diethyl ether (20 mL) and hexanes (20 mL) afforded a yellow solid $\mathbf{4 b}$ which was collected by suction filtration and dried. Yield $0.045 \mathrm{~g}, 65 \%$. Selected data for $\mathbf{4 b}:{ }^{1} \mathrm{H}(500 \mathrm{MHz}): \delta 7.85-7.80(8 \mathrm{H}, \mathrm{m}$, arom. H$), 7.46(4 \mathrm{H}$, t, $J_{\mathrm{HH}} 7.0 \mathrm{~Hz}$, arom. H), $7.38\left(8 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}} 6.8 \mathrm{~Hz}\right.$, arom. $\left.H\right), 6.68-6.65(2 \mathrm{H}$, m, arom. $H), 6.57$ $\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 9.1 \mathrm{~Hz}\right.$, arom. H), $3.88\left(4 \mathrm{H}\right.$, dd, $\left.{ }^{3} J_{\mathrm{PtH}} 50.0 .{ }^{2} J_{\mathrm{PH}} 5.0 \mathrm{~Hz}, \mathrm{CH} 2\right), 2.87(6 \mathrm{H}, \mathrm{s}, \mathrm{CH} 3)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(202 \mathrm{MHz}): \delta-6.1 \mathrm{ppm},{ }^{1} \mathrm{JPtP}^{2} 3400 \mathrm{~Hz} . \mathrm{FT}-\mathrm{IR}(\mathrm{KBr}): v \mathrm{PtCl} 317,290 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pd} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (\%): C, 49.26; H, 4.20; N, 3.33. Found: C, 49.27; H, 4.32; N, 3.13.

NMR data

Figure S1 $\quad{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{P}-\mathbf{P}\left(\mathbf{N M e}_{\mathbf{2}}\right)\left(\right.$ recorded in $\left.\mathrm{CDCl}_{3}\right)$.

Figure S2 $\quad{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{P}-\mathbf{P}\left(\mathbf{N M e}_{2}\right)$ (recorded in $\left.\mathrm{CDCl}_{3}\right)$.

Figure S3 $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{P}-\mathbf{P}\left(\mathbf{N M e}_{2}\right)$ (recorded in $\left.\mathrm{CDCl}_{3}\right)$.

Figure S4 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a}$ (recorded in CDCl_{3}).

Figure S5 $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 1a (recorded in $\left.\mathrm{CDCl}_{3}\right)$.

Figure S6 $\quad{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 b}$ (recorded in CDCl_{3}).

Figure 57
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{1 b}$ (recorded in CDCl_{3}).

Figure S8 $\quad{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 c}$ (recorded in CDCl_{3}).

Figure S9 $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{1 c}$ (recorded in CDCl_{3}).

Figure S10 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 b}$ (recorded in CDCl_{3}).

Figure S11 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 b}$ (recorded in CDCl_{3}).

Figure S12 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 c}$ (recorded in CDCl_{3}).

Figure S13 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 c}$ (recorded in CDCl_{3}).

Figure S14 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 d}$ (recorded in CDCl_{3}).

Figure S15 $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 d}$ (recorded in CDCl_{3}).

Figure S16 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 e}$ (recorded in CDCl_{3}).

Figure S17 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 e}$ (recorded in CDCl_{3}).

Figure S18 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 a}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S19 $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{3 a}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S20 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 b}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S21 $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{3 b}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S22 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 c}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S23 $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{3 c}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S24 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 d}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S25 $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{3 d}$ (recorded in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S26 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 a}$ (recorded in CDCl_{3}).

Figure S27 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{4 a}$ (recorded in CDCl_{3}).

Figure S28 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 b}$ (recorded in CDCl_{3}).

Figure S29 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{4 b}$ (recorded in CDCl_{3}).

X-ray figures

Figure S30 Molecular structure of $\mathbf{3 a} \cdot 12 \mathrm{CD}_{3} \mathrm{CN}$ in the solid state. All hydrogen atoms and some solvents have been omitted for clarity. Selected bond lengths $[\AA \AA]$ and angles $\left[{ }^{\circ}\right]$: $\mathrm{Pd}(1)-\mathrm{P}(1) 2.2220(17), \mathrm{Pd}(1)-\mathrm{P}(2 \mathrm{~A}) 2.2337(17), \mathrm{Pd}(1)-\mathrm{Cl}(1) 2.3410(18), \mathrm{Pd}(1)-\mathrm{Cl}(2)$
2.3501(17), $\mathrm{P}(1)-\mathrm{P}(2)$ 2.187(2); $\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2) 94.72(7), \mathrm{P}(1)-\mathrm{Pd}(2)-\mathrm{P}(2 \mathrm{~A}) 98.56(6)$.

Figure S31 Packing plot of $\mathbf{3 a} \cdot 12 \mathrm{CD}_{3} \mathrm{CN}$ in the solid state showing packing arrangement.

Single crystal X-ray data for $\mathbf{4 a} \cdot \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$

Suitable crystals of $\mathbf{4 a} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained by slow diffusion of hexanes onto a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{4 a}$. Crystal data for $\mathbf{4 a} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pd} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}: M_{\mathrm{r}}=794.80$, yellow plate, $0.53 \times 0.28 \times 0.06 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / c, a=9.852(2), b=12.814(3), c$ $=27.315(6) \AA, \beta=98.547(4)^{\circ}, V=3410.0(13) \AA^{3}, T=150(2) \mathrm{K}, Z=4, \lambda=0.71073 \AA$, $\mu\left(\mathrm{Mo}_{\mathrm{K}} \mathrm{K}_{\alpha}\right)=0.98 \mathrm{~mm}^{-1}, \theta$ range for data collection $=1.8-25.0^{\circ}, 5951$ independent reflections measured, $R_{\text {int }}=0.042, d_{\text {calc }}=1.548 \mathrm{~g} \mathrm{~cm}^{-3}, R 1=0.099$ (for 5114 data with $I>$ $2 \sigma(I)), w R 2=0.246$ (for all data), and 399 refined parameters, largest difference map features between 3.05 and $-2.85 \mathrm{e} / \mathrm{A}^{3}$.

Figure S32 Molecular structure of $\mathbf{4 a} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the solid state. All hydrogen atoms and solvents have been omitted for clarity. Selected bond lengths [\AA] and angles [${ }^{\circ}$]: $\operatorname{Pd}(1)-\mathrm{P}(1)$ 2.254(3), $\mathrm{Pd}(1)-\mathrm{P}(2) 2.239(3), \mathrm{Pd}(1)-\mathrm{Cl}(1) 2.365(3), \mathrm{Pd}(1)-\mathrm{Cl}(2) 2.342(3) ; \mathrm{P}(1)-\mathrm{Pd}(2)-\mathrm{P}(2)$ 93.82(10), $\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2) 90.88(10)$.

