This item was submitted to Loughborough's Research Repository by the author. Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated. ## Supplementary information files for Dinuclear Palladium(II) and Platinum(II) Complexes of a Readily Accessible Bicyclic Diphosphane PLEASE CITE THE PUBLISHED VERSION LICENCE CC BY 4.0 REPOSITORY RECORD Edgar, Mark, Mark Elsegood, Pingchuan Liu, Christopher R Miles, Martin Smith, and Shimeng Wu. 2022. "Supplementary Information Files for Dinuclear Palladium(ii) and Platinum(ii) Complexes of a Readily Accessible Bicyclic Diphosphane". Loughborough University. https://doi.org/10.17028/rd.lboro.20080034.v1. # **European Journal of Inorganic Chemistry** **Supporting Information** ## Dinuclear Palladium(II) and Platinum(II) Complexes of a Readily Accessible Bicyclic Diphosphane Mark Edgar, Mark R. J. Elsegood, Pingchuan Liu, Christopher R. Miles, Martin B. Smith,* and Shimeng Wu ### **Supporting Information** #### List of contents | | dichioropaniadium(ii) compiexes 4a and 4b | 2 | |--------------------|---|----| | Single crystal X-r | ay data for 4a·CH ₂ Cl ₂ | 33 | | NMR spectra | | | | Figure S1 | ¹ H NMR spectrum of compound P–P(NMe ₂) (recorded in CDCl ₃). | 3 | | Figure S2 | ¹³ C{ ¹ H} NMR spectrum of compound P-P(NMe₂) (recorded in CDCl ₃). | 4 | | Figure S3 | $^{31}P\{^{1}H\}$ NMR spectrum of compound P–P(NMe₂) (recorded in CDCl ₃). | 5 | | Figure S4 | ¹ H NMR spectrum of compound 1a (recorded in CDCl ₃). | 6 | | Figure S5 | ³¹ P{¹H} NMR spectrum of compound 1a (recorded in CDCl ₃). | 7 | | Figure S6 | ¹ H NMR spectrum of compound 1b (recorded in CDCl ₃). | 8 | | Figure S7 | ³¹ P{¹H} NMR spectrum of compound 1b (recorded in CDCl ₃). | 9 | | Figure S8 | ¹ H NMR spectrum of compound 1c (recorded in CDCl ₃). | 10 | | Figure S9 | ³¹ P{¹H} NMR spectrum of compound 1c (recorded in CDCl ₃). | 11 | | Figure S10 | ¹ H NMR spectrum of compound 2b (recorded in CDCl ₃). | 12 | | Figure S11 | ³¹ P{ ¹ H} NMR spectrum of compound 2b (recorded in CDCl ₃). | 13 | | Figure S12 | ¹ H NMR spectrum of compound 2b (recorded in CDCl ₃). | 14 | | Figure S13 | ³¹ P{ ¹ H} NMR spectrum of compound 2c (recorded in CDCl ₃). | 15 | | Figure S14 | ¹ H NMR spectrum of compound 2d (recorded in CDCl ₃). | 16 | | Figure S15 | ³¹ P{ ¹ H} NMR spectrum of compound 2d (recorded in CDCl ₃). | 17 | | Figure S16 | ¹ H NMR spectrum of compound 2e (recorded in CDCl ₃). | 18 | | Figure S17 | ³¹ P{ ¹ H} NMR spectrum of compound 2e (recorded in CDCl ₃). | 19 | | Figure S18 | ¹ H NMR spectrum of compound 3a (recorded in CD ₃ CN). | 20 | | Figure S19 | $^{31}P\{^{1}H\}$ NMR spectrum of compound 3a (recorded in CD ₃ CN). | 21 | | Figure S20 | ¹ H NMR spectrum of compound 3b (recorded in CD ₃ CN). | 22 | | Figure S21 | ³¹ P{¹H} NMR spectrum of compound 3b (recorded in CD ₃ CN). | 23 | | Figure S22 | ¹ H NMR spectrum of compound 3c (recorded in CD ₃ CN). | 24 | | Figure S23 | ³¹ P{¹H} NMR spectrum of compound 3c (recorded in CD ₃ CN). | 25 | | Figure S24 | ¹ H NMR spectrum of compound 3d (recorded in CD ₃ CN). | 26 | | Figure S25 | ³¹ P{ ¹ H} NMR spectrum of compound 3d (recorded in CD ₃ CN). | 27 | | Figure S26 | ¹ H NMR spectrum of compound 4a (recorded in CDCl ₃). | 28 | | Figure S27 | ³¹ P{ ¹ H} NMR spectrum of compound 4a (recorded in CDCl ₃). | 29 | | Figure S28 | ¹ H NMR spectrum of compound 4b (recorded in CDCl ₃). | 30 | | Figure S29 | ³¹ P{ ¹ H} NMR spectrum of compound 4b (recorded in CDCl ₃). | 31 | | X-ray figures | | | | Figure S30 | Molecular structure of 3a·12CD ₃ CN in the solid state. All hydrogen atoms and some solvents | | | | have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd(1)–P(1) 2.2220(17), | | | | Pd(1)–P(2A) 2.2337(17), Pd(1)–Cl(1) 2.3410(18), Pd(1)–Cl(2) 2.3501(17), P(1)–P(2) 2.187(2); | | | | Cl(1)-Pd(1)-Cl(2) 94.72(7), P(1)-Pd(2)-P(2A) 98.56(6). | 32 | | Figure S31 | Packing plot of 3a·12CD ₃ CN in the solid state showing packing arrangement. | 32 | | Figure S32 | Molecular structure of 4a·CH ₂ Cl ₂ in the solid state. All hydrogen atoms and solvents have | | | | been omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd(1)–P(1) 2.254(3), | | | | Pd(1)–P(2) 2.239(3), Pd(1)–Cl(1) 2.365(3), Pd(1)–Cl(2) 2.342(3); P(1)–Pd(2)–P(2) 93.82(10), | | | | Cl(1)-Pd(1)-Cl(2) 90.88(10). | 33 | | | | 3. | #### Experimental for dichloropalladium(II) complexes 4a and 4b Synthesis of **4a**: To [PdCl₂(η⁴-C₈H₁₂)] (0.027 g, 0.098 mmol) in CH₂Cl₂ (10 mL) was added Ph₂PCH₂N{C₆H₄(4-NMe₂)}CH₂PPh₂ (0.052 g, 0.098 mmol), preformed from 2 equiv. of Ph₂PCH₂OH and H₂NC₆H₄(4-NMe₂), and the solution stirred for 1 h. The volume of CH₂Cl₂ was reduced in vacuo to approx. 1–2 mL. Addition of diethyl ether (20 mL) and hexanes (20 mL) afforded solid **4a** which was collected by suction filtration and dried. Yield 0.058 g, 83%. Selected data for **4a**: ¹H (500 MHz): δ 7.86–7.82 (8H, m, arom. *H*), 7.46 (4H, dd, *J*_{HH} 8.2, 6.7 Hz, arom. *H*), 7.37 (8H, dt, *J*_{HH} 7.6, 2.2 Hz, arom. *H*), 6.67 (4H, d, *J*_{HH} 8.2 Hz, arom. *H*), 3.84 (4H, t, ²*J*_{PH} 3.1 Hz, C*H*₂), 2.88 (6H, s, C*H*₃). ³¹P{¹H} (202 MHz): δ 10.1 ppm. FT–IR (KBr): *ν*_{PdCl} 310, 293 cm⁻¹. Anal. Calcd for C₃4H₃4Cl₂N₂P₂Pd·CH₂Cl₂ (%): C, 52.89; H, 4.57; N, 3.52. Found: C, 53.04; H, 4.55; N, 3.50. Synthesis of **4b**: To [PtCl₂(η⁴-C₈H₁₂)] (0.035 g, 0.094 mmol) in CH₂Cl₂ (10 mL) was added Ph₂PCH₂N{C₆H₄(4-NMe₂)}CH₂PPh₂ (0.050 g, 0.094 mmol), preformed from 2 equiv. of Ph₂PCH₂OH and H₂NC₆H₄(4-NMe₂), and the solution stirred for 1 h. The volume of CH₂Cl₂ was reduced in vacuo to approx. 1–2 mL. Addition of diethyl ether (20 mL) and hexanes (20 mL) afforded a yellow solid **4b** which was collected by suction filtration and dried. Yield 0.045 g, 65%. Selected data for **4b**: 1 H (500 MHz): δ 7.85–7.80 (8H, m, arom. *H*), 7.46 (4H, t, J_{HH} 7.0 Hz, arom. *H*), 7.38 (8H, t, J_{HH} 6.8 Hz, arom. *H*), 6.68–6.65 (2H, m, arom. *H*), 6.57 (2H, d, J_{HH} 9.1 Hz, arom. *H*), 3.88 (4H, dd, $^{3}J_{PtH}$ 50.0. $^{2}J_{PH}$ 5.0 Hz, CH₂), 2.87 (6H, s, CH₃). 31 P{ 1 H} (202 MHz): δ –6.1 ppm, $^{1}J_{PtP}$ 3400 Hz. FT–IR (KBr): ν_{PtCl} 317, 290 cm⁻¹. Anal. Calcd for C₃4H₃4Cl₂N₂P₂Pd·0.5CH₂Cl₂ (%): C, 49.26; H, 4.20; N, 3.33. Found: C, 49.27; H, 4.32; N, 3.13. #### NMR data **Figure S1** ¹H NMR spectrum of compound **P–P(NMe₂)** (recorded in CDCl₃). **Figure S2** ¹³C{¹H} NMR spectrum of compound **P–P(NMe₂)** (recorded in CDCl₃). Figure S3 $^{31}P\{^{1}H\}$ NMR spectrum of compound **P-P(NMe₂)** (recorded in CDCl₃). **Figure S4** ¹H NMR spectrum of compound **1a** (recorded in CDCl₃). **Figure S5** ³¹P{¹H} NMR spectrum of compound **1a** (recorded in CDCl₃). **Figure S6** ¹H NMR spectrum of compound **1b** (recorded in CDCl₃). **Figure S7** 31P{1H} NMR spectrum of compound **1b** (recorded in CDCl₃). **Figure S8** ¹H NMR spectrum of compound **1c** (recorded in CDCl₃). **Figure S9** ³¹P{¹H} NMR spectrum of compound **1c** (recorded in CDCl₃). Figure S10 ¹H NMR spectrum of compound 2b (recorded in CDCl₃). Figure S11 ³¹P{¹H} NMR spectrum of compound **2b** (recorded in CDCl₃). **Figure S13** ³¹P{¹H} NMR spectrum of compound **2c** (recorded in CDCl₃). **Figure S15** ³¹P{¹H} NMR spectrum of compound **2d** (recorded in CDCl₃). **Figure S16** ¹H NMR spectrum of compound **2e** (recorded in CDCl₃). **Figure S17** ³¹P{¹H} NMR spectrum of compound **2e** (recorded in CDCl₃). **Figure S19** ³¹P{¹H} NMR spectrum of compound **3a** (recorded in CD₃CN). **Figure S20** ¹H NMR spectrum of compound **3b** (recorded in CD₃CN). **Figure S21** ³¹P{¹H} NMR spectrum of compound **3b** (recorded in CD₃CN). Figure S22 ¹H NMR spectrum of compound 3c (recorded in CD₃CN). **Figure S23** ³¹P{¹H} NMR spectrum of compound **3c** (recorded in CD₃CN). **Figure S24** ¹H NMR spectrum of compound **3d** (recorded in CD₃CN). **Figure S25** ³¹P{¹H} NMR spectrum of compound **3d** (recorded in CD₃CN). **Figure S26** ¹H NMR spectrum of compound **4a** (recorded in CDCl₃). Figure S27 ³¹P{¹H} NMR spectrum of compound 4a (recorded in CDCl₃). **Figure S29** ³¹P{¹H} NMR spectrum of compound **4b** (recorded in CDCl₃). #### X-ray figures **Figure S30** Molecular structure of **3a**·12CD₃CN in the solid state. All hydrogen atoms and some solvents have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd(1)–P(1) 2.2220(17), Pd(1)–P(2A) 2.2337(17), Pd(1)–Cl(1) 2.3410(18), Pd(1)–Cl(2) 2.3501(17), P(1)–P(2) 2.187(2); Cl(1)–Pd(1)–Cl(2) 94.72(7), P(1)–Pd(2)–P(2A) 98.56(6). Figure S31 Packing plot of 3a·12CD₃CN in the solid state showing packing arrangement. #### Single crystal X-ray data for 4a·CH₂Cl₂ Suitable crystals of $4a\cdot \text{CH}_2\text{Cl}_2$ were obtained by slow diffusion of hexanes onto a CH₂Cl₂ solution of $4a\cdot \text{CH}_2\text{Cl}_2$: C₃₄H₃₄Cl₂N₂P₂Pd·CH₂Cl₂: $M_r = 794.80$, yellow plate, 0.53 x 0.28 x 0.06 mm³, monoclinic, space group $P2_1/c$, a = 9.852(2), b = 12.814(3), c = 27.315(6) Å, $\beta = 98.547(4)^\circ$, V = 3410.0(13) Å³, T = 150(2) K, Z = 4, $\lambda = 0.71073$ Å, $\mu(\text{Mo-K}_{\alpha}) = 0.98$ mm⁻¹, θ range for data collection = 1.8–25.0°, 5951 independent reflections measured, $R_{\text{int}} = 0.042$, $d_{\text{calc}} = 1.548$ g cm⁻³, R1 = 0.099 (for 5114 data with $I > 2\sigma(I)$), wR2 = 0.246 (for all data), and 399 refined parameters, largest difference map features between 3.05 and –2.85 e/Å³. **Figure S32** Molecular structure of $4a \cdot \text{CH}_2\text{Cl}_2$ in the solid state. All hydrogen atoms and solvents have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd(1)–P(1) 2.254(3), Pd(1)–P(2) 2.239(3), Pd(1)–Cl(1) 2.365(3), Pd(1)–Cl(2) 2.342(3); P(1)–Pd(2)–P(2) 93.82(10), Cl(1)–Pd(1)–Cl(2) 90.88(10).