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ABSTRACT
We propose a quantum-circuit refrigerator (QCR) based on photon-assisted quasiparticle tunneling through a single normal-metal–
insulator–superconductor (NIS) junction. In contrast to previous studies with multiple junctions and an additional charge island for the
QCR, we directly connect the NIS junction to an inductively shunted electrode of a superconducting microwave resonator making the device
immune to low-frequency charge noise. At low characteristic impedance of the resonator and parameters relevant to a recent experiment,
we observe that a semiclassical impedance model of the NIS junction reproduces the bias voltage dependence of the QCR-induced damping
rate and frequency shift. For high characteristic impedances, we derive a Born–Markov master equation and use it to observe significant non-
linearities in the QCR-induced dissipation and frequency shift. We further demonstrate that, in this regime, the QCR can be used to initialize
the linear resonator into a non-thermal state even in the absence of any microwave drive.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0096849

I. INTRODUCTION

Superconducting quantum circuits1–4 have emerged as a highly
promising platform for quantum simulations and quantum infor-
mation processing. As these circuits advance in terms of perfor-
mance and complexity, active control of individual devices within
the circuit constitutes a key challenge. In particular, the control
of temperature and dissipation in devices such as transmission
lines,5 microwave resonators,6 or qubits7–11 enables targeted cooling
and initialization of these devices. This has already been achieved
with the invention of the quantum-circuit refrigerator (QCR),12 a
stand-alone, on-chip device that can locally cool superconducting
circuits based on photon-assisted tunneling utilizing a pair of par-
allel normal-metal–insulator–superconductor (NIS) junctions.13,14

We note that the NIS junctions have been widely used for refrig-
eration of electronic subsystem15–19 due to the non-linear Peltier
effect predicted in Ref. 20. Contrary to this, the QCR cools down
the photonic degrees of freedom of the system.

In this work, we present a simplified quantum-circuit refrig-
erator based on a single NIS junction and analyze this device in
the case of direct coupling to a coplanar waveguide (CPW) res-
onator. The basic operation principle is similar to that of a double-
junction refrigerator: A small bias voltage V0 < Δ/e, where Δ is
the superconductor gap parameter, is applied across the junction.
Quasiparticles can tunnel through the insulating barrier, energet-
ically allowed by absorption of photons from the coupled circuit,
which decreases the temperature of the electric degrees of freedom
of the circuit.14,21,22 Such tunneling events induce quantum–state
transitions, for example, in a microwave resonator.6,23 With increas-
ing voltages V0 > Δ/e, photon emission rate into the circuit
approaches that of photon absorption, which leads to heating.24,25

Therefore, we operate the QCR in the range Δ − h ωr < eV0 < Δ,
where ωr is the angular frequency of the lowest mode of the
circuit.

We first present the design of a single-junction QCR cou-
pled to a resonator, compare it to conventional double-junction
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FIG. 1. (a) Design of a single-junction QCR directly connected to a λ/4 CPW res-
onator. The voltage profile of the fundamental mode at angular frequency ωr has
an anti-node at the superconductor lead and a node where the center conduc-
tor connects to the ground plane (green). The NIS junction of capacitance Cj is
biased with a voltage V0 applied to the normal-metal lead. (b) Lumped-element
circuit model of the fundamental resonator mode coupled to the NIS junction.

microcooler devices, and analyze this system in terms of its tun-
able Lamb shift and dissipation rate. We further investigate the case
of a single-junction QCR coupled to a high-impedance resonator,
including multi-photon processes. Finally, we present our conclu-
sions and explore further theoretical and experimental opportunities
with this device.

II. SYSTEM SETUP
The system under study in Fig. 1 consists of a single normal-

metal–insulator–superconductor tunnel junction connected to a
superconducting resonator forming a direct conduction path from
the junction to the ground potential. The normal-metal lead is
used to voltage bias the junction, providing on-demand control of
tunneling. This novel implementation of a QCR differs from the
previous devices12 in two ways. First, we employ a single NIS junc-
tion as opposed to a double junction in a SINIS structure. Second,
we avoid forming a charge island between the junction and the
resonator by directly connecting the resonator to the NIS junc-
tion as opposed to capacitive coupling. The primary advantage of
this approach is to mitigate low-frequency charge noise caused by
changes in the charge state of the island and the charge traps in its
vicinity.26

To achieve an equal tunneling rate and cooling power as for the
double-junction device,12,14 the corresponding single-junction QCR
can be designed with half the tunneling resistance. In an experimen-
tal setting, the single-junction QCR can be controlled with a single
line, whereas the double-junction QCR is typically operated through
two separate control lines, an input and an output line.6,12,27 For
the single-junction QCR, a directly connected λ/4 CPW resonator
naturally fixes the superconducting electrode to the ground potential
at low frequencies.

III. SEMICLASSICAL MODEL
We begin with an analysis of the dissipation and frequency

shifts induced by the coupling of the resonator to the NIS junction.
To this end, we employ classical equations of motion for the electro-
magnetic field in the circuit. The current–voltage characteristic of
an NIS junction is both strongly non-linear and non-local in time.
However, if we assume the ac component of the voltage to be small,
we can replace the junction by an effective frequency-dependent
conductance, which can be controlled by the dc component of the

voltage. To proceed, we define

VNIS(t) = Vdc +
1

2π

+∞

∫
−∞

Vac(ω)e−iωt dω, (1)

INIS(t) ≈ Idc(Vdc) +
1

2π

+∞

∫
−∞

GNIS(Vdc, ω)Vac(ω)e−iωt dω, (2)

where G(Vdc, ω) is the conductance of the junction at bias volt-
age Vdc and angular frequency ω. Such an expansion is valid in the
limit28 ∣eVac(ω)∣≪ ∣hω∣.

To find the dissipation rate and the Lamb shift of the resonator
caused by the coupling to the NIS junction, we write Kirchhoff’s law
for the circuit shown in Fig. 1(b) as

INIS[V0 − φ̇] = Cφ̈ + φ
L

, (3)

where C = Cj + Cr,

φ(t) =
t

∫
−∞

V(t′) dt′, (4)

and V(t) is the voltage across the capacitance Cr. Employing Eq. (2)
and going to the Fourier picture, we obtain an equation for the
eigenfrequency of the resonator as follows:

− ω2C − iωGNIS(V0, ω) + 1
L
= 0. (5)

Provided the conductance is small GNIS(V0, ω)≪ Z−1
r and changes

smoothly on the frequency scale of GNIS(V0, ωr)Zrωr, where
Zr =
√

L/C is the characteristic impedance of the resonator, we can
find the angular-frequency shift ωL and the dissipation rate γ as

ωL − iγ ≈ − i
2

GNIS(V0, ωr)ωrZr, (6)

where ωr = 1/
√

LC is the resonance frequency of the bare LC cir-
cuit. Thus, both of these quantities are proportional to the imaginary
and real parts of the NIS junction conductance. We can use this
simple approach when the voltage across the capacitor satisfies the
condition ∣eV(ω)∣≪ ∣hω∣. In the quantum regime, voltage fluctua-
tions are bounded from below by zero point fluctuations, δV(ω)/∣ω∣
∼
√

h̵Zr/2. Thus, we obtain the applicability criterion for our
result to be

√
πZr/RK ≪ 1, where RK = 2πh/e2 is the von Klitzing

constant.
Following Ref. 28, we derive the real and imaginary parts of the

junction conductance and obtain the following expressions:

Re[GNIS(V0, ω)]

= 1
8Rjω

+∞

∫
−∞

Im[ h̵ω′ + iγDΔ√
Δ2 − (h̵ω′ + iγDΔ)2

]

× {tanh[ h̵(ω′ + ω) − eV0

2kBT
] + tanh[ h̵(ω′ + ω) + eV0

2kBT
]

− tanh[ h̵(ω′ − ω) − eV0

2kBT
] − tanh[ h̵(ω′ − ω) + eV0

2kBT
]} dω′,

(7)
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Im[GNIS(V0, ω)]

= 1
4Rjω

+∞

∫
−∞

Re[ h̵ω′ + iγDΔ√
Δ2 − (h̵ω′ + iγDΔ)2

]

× (1
2
{tanh[ h̵(ω′ + ω) − eV0

2kBT
] + tanh[ h̵(ω′ + ω) + eV0

2kBT
]

+ tanh[ h̵(ω′ − ω) − eV0

2kBT
] + tanh[ h̵(ω′ − ω) + eV0

2kBT
]}

− tanh[ h̵ω′ − eV0

2kBT
] − tanh[ h̵ω′ + eV0

2kBT
]) dω′, (8)

where Rj is the junction resistance in the normal state, γD is the
Dynes parameter of the junction, and T is the electron tempera-
ture of the normal metal. The frequency shift and the dissipation
rate of the resonator are shown in Fig. 2 for parameters correspond-
ing to the experiments in Ref. 27, where a double-junction QCR
capacitively coupled to a λ/2 resonator is employed. The theoreti-
cal results from Eqs. (6)–(8) well agree with the experimental data
despite the differences in the design of the sample and our model.
Such a good correspondence can be explained by the fact that the

FIG. 2. (a) QCR-induced dissipation rate and (b) frequency shift of a CPW res-
onator as functions of the bias voltage of the NIS junction. Blue lines correspond
to Eqs. (6)–(8), and the green dots show the experimental data from Ref. 27.
The QCR-induced frequency shift is defined to vanish at zero voltage V = 0.
The device parameters are given by ωr = 2π × 4.67 GHz, Zr = 34.8 Ω,
Δ = 0.215 meV, T = 0.17 K, γD = 4 × 10−4, and the junction resistance Rj = 16
kΩ is obtained from a fit to the experimental relaxation rate. Panels (c) and (d)
show the dissipation rate and the frequency shift, respectively, for identical para-
meters except for T = 0 K. The positions of the dips and peaks in the frequency
shifts are determined by eV0 = Δ, Δ ± hωr.

frequency shift and the dissipation rate are both proportional to
the sum of the conductances of the NIS junctions in the QCR.
Provided that the SINIS junction is symmetric, the expressions for
the frequency shift and the dissipation rate coincide with Eq. (6),
where the tunneling resistance and the characteristic impedance are
adjusted accordingly. However, for the asymmetric junction, this
statement is no longer valid since the voltages across the insulat-
ing layers of the SINIS junction are not equal to each other in this
case.

IV. QUANTUM MODEL
If the condition

√
πZr/RK ≪ 1 is violated, multi-photon pro-

cesses become important in the quantum limit. In this case, we
need to quantize the electromagnetic field in the circuit. Employing
the standard field quantization approach,23 we obtain the following
Hamiltonian for the circuit:

Ĥ = Ĥr + ĤNS + Ĥt, (9)

Ĥr =
q̂ 2

2C
+ φ̂ 2

2L
, (10)

ĤNS =∑
kσ
(ξn

k − eV0)d̂†
kσ d̂kσ +∑

pσ
ξs

pĉ†pσ ĉpσ + Δ∑
p
(ĉp↑ĉp̄↓ + h.c.), (11)

Ĥt =∑
kpσ
(Γkpd̂†

kσ ĉpσei eφ̂
h̵ + h.c.), (12)

where φ̂ and q̂ are the canonically conjugate [φ̂, q̂] = ih̵ flux and
charge operators of the LC circuit, respectively, d̂kσ is the annihila-
tion operator of an electron in mode k with spin projection σ in the
normal metal, ξn

k is the energy of this mode with respect to the Fermi
energy, ĉpσ is the annihilation operator of an electron in the mode
p with spin projection σ in the superconductor, ξs

p is the energy of
this mode with respect to the Fermi energy, and Γkp is the tunnel-
ing matrix element. We emphasize that the coupling between the
electromagnetic and fermionic degrees of freedom occurs through
the charge shift operator exp(ieφ̂/h̵) in the tunneling Hamiltonian,
since the tunneling of an electron through the junction is associated
with a change in the capacitor charge by a single elementary charge.
Introducing the notations

â = 1√
2h̵Zr

(φ̂ + iZrq̂), α = e

√
Zr

2h̵
=
√

πZr

RK
, (13)

F̂ = eiα(â+â †
), Θ̂ =∑

kpσ
Γkpd̂†

kσ ĉpσ , (14)

and employing the standard Born–Markov approximation, we
obtain a Redfield master equation29 that governs the dynamics of
the resonator density operator ρ̂ as
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dρ̂
dt
=ℒ (ρ̂) = − i

h̵
[Ĥr, ρ̂]

− 1
h̵2

+∞

∫
0

{[F̂F̂ †(−τ)ρ̂ − F̂ †(−τ)ρ̂F̂]⟨Θ̂ †(τ)Θ̂⟩

+ [ρ̂F̂ †(−τ)F̂ − F̂ρ̂F̂ †(−τ)]⟨Θ̂Θ̂ †(τ)⟩

+ [F̂ †F̂(−τ)ρ̂ − F̂(−τ)ρ̂F̂ †]⟨Θ̂(τ)Θ̂ †⟩

+ [ρF̂(−τ)F̂ † − F̂ †ρ̂F̂(−τ)]⟨Θ̂ †Θ̂(τ)⟩} dτ, (15)

where ℒ is the Liouvillian of the system, and the time-dependent
operators are given in the interaction picture,

F̂(τ) = ei Ĥ rτ
h̵ F̂e−i Ĥ rτ

h̵ , Θ̂(τ) = ei Ĥ NSτ
h̵ Θ̂ e−i Ĥ NSτ

h̵ . (16)

In the following, we derive a convenient form for the dynamical
correlators of the electron tunneling operator:

⟨Θ̂ †(τ)Θ̂⟩ =∑
kpσ
∣Γkp∣2⟨d̂kσ(τ)d̂†

kσ⟩⟨ĉ
†
pσ(τ)ĉpσ⟩

≈ 2∣Γ∣2∑
k
⟨d̂k↑(τ)d̂†

k↑⟩∑
p
⟨ĉ†p↑(τ)ĉp↑⟩. (17)

Here, we assume that the tunneling matrix elements have equal mag-
nitudes ∣Γkp∣2 = ∣Γ∣2 regardless of the spatial structure of the normal
modes k and p. We carry out the quantum-mechanical averaging
assuming thermal states are described by Fermi–Dirac distributions
of the quasiparticles in the superconductor and shifted by the bias
voltage in the normal metal as

⟨d̂k↑(τ)d̂†
k↑⟩ =

exp[− i
̵h(ξ

n
k − eV0)τ]

1 + exp[− ξn
k

kBT ]
, (18)

⟨ĉ†p↑(τ)ĉp↑⟩ =
exp( i

̵h εpτ)
2[1 + exp( εp

kBT )]
(1 + ξs

p

εp
)

+
exp(− i

̵h εpτ)
2[1 + exp(− εp

kBT )]
(1 − ξs

p

εp
), (19)

where εp =
√
(ξs

p)
2 + Δ2. The summation over the normal elec-

tronic modes of the normal metal k and the superconductor p
can be replaced with integration over the normal electron energy
ξn

k and ξs
p, respectively, multiplied by the corresponding density of

states as

∑
k(p)

Xk(p) = Vn(s)

+∞

∫
−∞

νn(s)(ξn(s)
k(p))X(ξ

n(s)
k(p)) dξn(s)

k(p), (20)

where X may be replaced by the corresponding correlators, Vn(s) is
the volume of the normal metal (superconductor), and νn(s)(ξn(s)

k(p))
is the density of states per the unit volume per spin projection of the
normal metal (superconductor).

Only the electronic states close to the Fermi level, where the
density of states is approximately constant, give a significant con-
tribution to the tunneling correlation function. Contribution of the
levels that lie far away from the Fermi energy is negligible and we
may assume that the density of states is an arbitrary function, which
decays at high energies in order to ensure the convergence of the
corresponding integral. Thus, we employ a Gaussian ansatz for the
density of states,

νn(s)(ξn(s)
k(p)) = ν(0)n(s) exp

⎡⎢⎢⎢⎢⎢⎣
−
⎛
⎜
⎝

ξn(s)
k(p)

h̵Ω

⎞
⎟
⎠

2⎤⎥⎥⎥⎥⎥⎦
, (21)

where the cut-off energy h Ω≫ Δ, eV0 defines the highest energy
scale of the NIS junction. After integration over ξn(s)

k(p), we obtain the
expressions for the dynamical correlation functions of the electronic
tunneling operator Θ̂ as

⟨Θ̂ †(τ)Θ̂⟩ = 2RKh̵2

Rj
g>n (τ)g<s (−τ)ei eV0

h̵ τ , (22)

⟨Θ̂Θ̂ †(τ)⟩ = 2RKh̵2

Rj
g<n (τ)g>s (−τ)ei eV0

h̵ τ , (23)

where the resistance of the junction is given by

Rj =
RK

4π2∣Γ∣2ν(0)n ν(0)s VnVs
, (24)

and the quasiclassical greater and lesser Green’s functions of the
normal metal and the superconductor assume the forms

g>(<)n(s) (τ) =
1

2π ∫ g>(<)n(s) (ω)e
−iωτ dω, (25)

g>(<)n (ω) =
exp(− ω2

Ω2 )

1 + exp(∓ ̵hω
kBT )

, (26)

g>(<)s (ω) =
exp[− (̵hω)2

−Δ2

(
̵hΩ)2 ]

1 + exp(∓ ̵hω
kBT )

Im
h̵ω + iγDΔ√

Δ2 − (h̵ω + iγDΔ)2
. (27)

The characteristic decay rate of the correlation functions is deter-
mined by the temperature and is equal to kBT/h . This rate
should sufficiently exceed the relaxation rate of the resonator
min(Zr, RK)ωr/Rj, which introduces a restriction on the temper-
ature at which the above-utilized Born–Markov approximation is
valid.

Instead of solving Eq. (15), we simplify it further by applying a
so-called secular approximation to the master equation, leaving only
the terms that do not quickly oscillate in time in the interaction pic-
ture. As the first step of this simplification, we express the Redfield
master Eq. (15) as
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dρ̂
dt
= −iωr[â †â, ρ̂] − (F̂F̂†

1 ρ̂ − F̂†
1 ρ̂F̂ + ρ̂F̂†

2 F̂ − F̂ρ̂F̂†
2

+ F̂ †F̂2ρ̂ − F̂2ρ̂F̂ † + ρ̂F̂1F̂ † − F̂ †ρ̂F̂1), (28)

where

F̂1 =
1
h̵2∫

+∞

0
F̂(−τ)⟨Θ̂ †Θ̂(τ)⟩ dτ, (29)

F̂2 =
1
h̵2∫

+∞

0
F̂(−τ)⟨Θ̂(τ)Θ̂ †⟩ dτ. (30)

Next, we move to the frame rotating with the bare oscillator
frequency ωr such that

ρ̂(t) = e−iωrtâ † âρ̃(t)eiωrtâ † â. (31)

In this frame, the density operator ρ̃ satisfies the following equation:

dρ̃
dt
= −F̂(t)F̂†

1(t)ρ̃ + F̂†
1(t)ρ̃F̂(t) − ρ̃F̂†

2(t)F̂(t) + F̂(t)ρ̃F̂†
2(t)

− F̂ †(t)F̂2(t)ρ̃ + F̂2(t)ρ̃F̂ †(t) − ρ̃F̂1(t)F̂ †(t) + F̂ †(t)ρ̃F̂1(t),
(32)

where

F̂(t) = eiωrtâ † âF̂e−iωrtâ † â, (33)

F̂1(t) = eiωrtâ † âF̂1e−iωrtâ † â, (34)

F̂2(t) = eiωrtâ † âF̂2e−iωrtâ † â. (35)

We write the equation for the matrix elements of ρ̃mn = ⟨m∣ρ̃∣n⟩ in
the basis of the eigenfunctions of the harmonic oscillator as follows:

dρ̃mn

dt
=∑

pq
[F†

1mpρ̃pqFqneiωr(m−p+q−n)t

− FmpF†
1pqρ̃qneiωr(m−q)t + Fmpρ̃pqF†

2qneiωr(m−p+q−n)t

− ρ̃mpF†
2pqFqneiωr(p−n)t + F2mpρ̃pqF†

qneiωr(m−p+q−n)t

− F†
mpF2pqρ̃qneiωr(m−q)t + F†

mpρ̃pqF1qneiωr(m−p+q−n)t

− ρ̃mpF1pqF†
qneiωr(p−n)t], (36)

where

Fmn = ⟨m∣F̂∣n⟩, F†
mn = ⟨m∣F̂ †∣n⟩, (37)

F1mn = ⟨m∣F̂1∣n⟩, F†
1mn = ⟨m∣F̂

†
1 ∣n⟩, (38)

F2mn = ⟨m∣F̂2∣n⟩, F†
2mn = ⟨m∣F̂

†
2 ∣n⟩. (39)

In the secular approximation, we drop the terms that quickly oscil-
late in the rotating frame, leaving only slowly changing. This is justi-
fied if the characteristic decay rate min(Zr, RK)/Rjωr lies well below
the bare resonator frequency ωr. Finally, we obtain the Lindblad
equation for the resonator density operator,

dρ̃mn

dt
=∑

p
{ρ̃p(p+n−m)[F†

1mpF(p+n−m)n + FmpF†
2(p+n−m)n

+ F2mpF†
(p+n−m)n + F†

mpF1(p+n−m)n] − ρ̃mn

× [FmpF†
1 pm + F†

2npFpn + F†
mpF2 pm + F1npF†

pn]}. (40)

Note that the system of equations can be separated into a set of inde-
pendent systems, which couple only matrix elements ρ̃mn with fixed
m − n. This observation significantly reduces the computational
resources required for the calculations. We refer to the Liouvillian
of the Lindblad master equation as ℒ sec.

The steady-state density operator of the resonator satis-
fies ℒ sec(ρ̂0) = 0. Using the master equation, we calculate the
response function D(ω) with respect to an infinitesimal drive30–33

proportional to â + â †,

D(ω) = −i Tr{(â + â †)(ℒ sec + iω)−1[â + â †, ρ̂0]}. (41)

For an isolated resonator in its ground state, the response function
equals

D0(ω) =
2ωr

ω2
r − (ω + i0)2 . (42)

The poles of the response function as functions of the complex-
valued frequency ω define the characteristic frequencies and decay
rates of the modes in the system. From the definition of D(ω), we
observe that these poles correspond to the eigenvalues λj of the secu-
lar Liouvillian ℒ sec. Accordingly, the general response function can
be expanded as

D(ω) =∑
j

fj

λj + iω
, (43)

where the real and imaginary parts of λj give the decay rate and fre-
quency of the jth transition, respectively. The complex amplitude
fj quantifies how much this transition contributes to the response
function.

Figure 3 shows the dissipation rate and the frequency shift
of the resonator as functions of the dc voltage applied to the NIS
junction, obtained from eigenvalues of the Liouvillian of the mas-
ter equation. Here, we study a high-impedance resonator with
Zr = 20 kΩ, and consequently increased the junction resistance
to Rj = 640 kΩ in order to work in the validity regime of the
Born–Markov theory. In contrast to the low-impedance case, we
observe here several resonances that differ in frequency and decay
rate. Lowering the temperature to T = 0.02 K significantly increases
the number of pronounced branches. We suggest that these branches
correspond to the multi-photon transitions in the resonator, similar
to those found in Ref. 34. If the voltage is eV0 ≈ Δ − hωrn, where n
is a positive integer, then tunneling processes with absorption of n
and more photons from the resonator are allowed. This implies that
the resonator states with n or more photons rapidly decay to lower-
energy states, while states with less than n photons decay relatively
slowly. Thus, the system relaxes to some non-equilibrium steady
state with almost zero probability of having n or more photons,
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FIG. 3. (a) QCR-induced dissipation rate, (b) frequency shift, and (c) the mean
photon number ⟨n̂⟩ and the distance to the closest thermal state η defined in
Eq. (44) for a high-impedance resonator as a function of the dc voltage across
the NIS junction. The parameters are given by ωr = 2π × 4.67 GHz, Zr = 20 kΩ,
Δ = 0.215 meV, T = 0.17 K, γD = 4 × 10−4, and Rj = 640 kΩ. (d)–(f) As panels
(a)–(c) except for T = 0.02 K. The color of the lines in the panels (a), (b), (d), and
(e) corresponds to the relative absolute value of fj , which quantifies the contribution
of the resonance to the response function D(ω).

whereas the lower-energy states may have non-negligible occupa-
tion. If n = 1, the QCR absorbs all photons from the resonator and
the system relaxes toward the ground state. At negative n (volt-
ages above Δ/e), photon emission processes come into play and we
effectively heat the system. However, due to the complicated non-
linear interaction between the resonator and the QCR, the photon
distribution remains non-thermal.

To confirm this qualitative picture, we calculate two static
properties of the steady state: the mean occupation number,
⟨n̂⟩ = Tr{ρ̂0â †â}, and trace distance to the closest thermal state,35

η = inf
β
∥ρ̂0 − (1 − e−β)e−βâ † â∥, (44)

where ∥Â∥ = Tr{
√

ÂÂ †}. These quantities are shown in Figs. 3(c)
and 3(f) as functions of the bias voltage V0. At very low voltages,

the system is in a thermal state; hence, η is very low and ⟨n̂⟩ cor-
responds to the thermal distribution with temperature T. With
increasing voltage, the resonator heats up due to the finite Dynes
parameter of the superconductor and weak tunneling to the sub-
gap states. When approaching the voltage eV0 ∼ Δ, the occupation
number decreases and so does the distance to the thermal state,
since the single-photon processes come into play. This effect is espe-
cially pronounced in the low-temperature case shown in Fig. 3(f),
where a sudden drop almost to the ground state in the interval
Δ − hωr < eV0 < Δ + hωr is visible. With a further voltage increase,
photon emission comes into play and the QCR starts to heat the
resonator. Remarkably, the steady state in this regime still remains
non-thermal for high-characteristic-impedance resonators.

V. CONCLUSIONS
To summarize, in this paper, we have proposed a simple

design of a QCR consisting of a single NIS junction directly con-
nected to the cooling system. We showed that the QCR-induced
dissipation rate and the frequency shift of the low-characteristic-
impedance resonator can be found from a semiclassical treatment
of the dynamics of the electromagnetic field in the circuit. To
study the high-characteristic-impedance resonators and to obtain
a distribution of photons in the steady state, we employed the
Born–Markov master equation approach to the resonator dynamics.
We calculated the response function, the poles of which give the
characteristic frequencies and decay rates of the resonator. We
showed that a single bright resonance of the response function for
the low-characteristic-impedance resonators splits into several res-
onances for the high-characteristic-impedance resonators, which
correspond to the transitions between the shifted consecutive levels
of the resonator. The short decay time of the high-energy levels
due to the multi-photon transitions present in this system leads to
a significant broadening of some of the transitions. We also cal-
culated the mean photon number and the distance between the
steady state to the closest thermal state. We showed that for the
high-characteristic-impedance resonators, the photon distribution
function is essentially non-thermal due to the multi-photon transi-
tions. With this single-junction device, we can achieve all the desired
functionalities of a double-junction QCR. It can be used as a plat-
form for studying open quantum systems, which exhibit nontrivial
phenomena in the non-linear limit.
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