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Abstract—This paper studies the allocation of shared resources
between ultra-reliable low-latency communication (URLLC) and
enhanced mobile broadband (eMBB) in the emerging 5G and
beyond cellular networks. In this paper, we design a unique
queuing mechanism for the joint eMBB/URLLC system. The
aim is to flexibly schedule URLLC traffic to enhance the total
eMBB throughput and the reliability of URLLC packets (i.e.,
the probability of not dropping URLLC packets in each mini-
slot) while maintaining a satisfactory transmission latency as
per the 3GPP requirements. Precisely, by deriving the steady-
state probabilities of URLLC queue backlog analytically, we
formulate a stochastic optimization problem to maximize the total
normalized eMBB throughput and the URLLC utility. Due to
the stochastic nature of the objective function, it is expensive
to evaluate it for any set of inputs, and thus the Bayesian
optimization is applied to obtain the optimal results of such
a black-box objective function. Numerical results demonstrate
that the proposed queuing mechanism never violates the latency
requirement of the URLLC services but improves the reliability.
It also enhances the total normalized eMBB throughput as
compared to the method without queuing.

Index Terms—Bayesian optimization, dynamic scheduling,
eMBB, punctured scheduling, queuing, URLLC.

I. INTRODUCTION

THE fifth generation of cellular networks (5G) and the
emerging sixth-generation wireless networks (6G) have

to support extremely challenging service requirements, such as
ultra low latency, ultra high reliability, and high transmission
rates, which are essential to support emerging applications
in the fields of autonomous driving, large-scale Internet of
Things (IoT), and augmented reality/virtual reality (AR/VR)
[1]–[5]. Ultra-reliable low-latency communications (URLLC)
and enhanced Mobile Broadband (eMBB) services are two
main categories that have been introduced in the 5G new
radio. In the application of the former service, 3GPP has
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specified that each URLLC packets should be served in a
very short time (i.e., up to one millisecond) with the packet
error rate of less than 10−5, or even down to 10−9 [6]. With
such strict requirements, the possible applications of URLLC
include intelligent transportation, industry automation and
generally mission-critical services [7]. While URLLC has been
characterized by low latency and ultra reliable requirements,
the eMBB service targets high data rates to bring a faster and
better user experience. The target data rates for eMBB services
usually are higher than 100Mb/s [8].

When transmitting the eMBB and URLLC traffic in the
same frequency-time spectrum, different time scales are ap-
plied to optimize the resource blocks allocation [9]. The eMBB
services often occupy a more significant proportion of the
transmission resource blocks, and the infrequent URLLC traf-
fic is normally served spontaneously [10]. Thus, each eMBB
packet can be coded over a longer time slot and each URLLC
packet is served in shorter mini-slot to achieve the low latency
requirement. Besides, 3GPP proposed a resource allocation
and puncturing scheme for the URLLC/eMBB coexistence
system [11]. In such puncturing scheme, the transmission
channel suspends the ongoing eMBB packets in order to trans-
mit URLLC packets. Specifically, when the channel senses
an incoming URLLC packet, it immediately punctures the
eMBB traffic in the next mini-slot, or the URLLC packet
will be dropped as a loss. The authors in [12] elaborated
the benefits of using the puncturing scheduling policy on the
joint system of eMBB and URLLC, which are considering
the sporadic and random characteristics of the URLLC traffic
and transmitting such latency-critical service upon the ongoing
eMBB transmissions to enhance the reliability. However, such
a scheduling technique influences the quality of services of the
eMBB services. In more detail, the utility of eMBB services
(i.e., the data rate or total throughput) is directly influenced
by the number of preemption URLLC packets and more
puncturing on the eMBB channels could cause the decoding
of eMBB to fail.

A. Relevant Works
With the preemptive puncturing policy, the current studies

focus on the optimization problems that maximize the alloca-
tion of URLLC packets among eMBB traffic within the target
latency while maintaining the utility of eMBB users.

Some researchers assumed the URLLC traffic has a higher
scheduling priority than eMBB traffic. For example, the work
in [13] considered a risk-sensitive model for eMBB trans-
mission and optimized the URLLC reliability as a chance
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constraint which was relaxed based on Markov’s inequality.
Besides, in [14], the authors showed the advantage of eMBB-
aware URLLC scheduling decisions. Such a method primarily
punctures eMBB transmission, which caused the low mod-
ulation and coding scheme index. Some other researchers
attempted to jointly schedule URLLC with eMBB services.
In [15], the authors considered three different loss models for
eMBB rate, i.e., linear, convex and threshold. They maximized
the eMBB utility under different loss models while guarantee-
ing the URLLC requirements. Considering the different distri-
butions of URLLC traffic, [16] formed a chance-constrained
optimization problem of the joint eMBB/URLLC system, and
the cumulative distribution function (CDF) was applied to
transform the chance constraint into a linear constraint. Their
proposed algorithm showed a fair allocation of resource blocks
to eMBB users.

Some researchers implemented machine learning to solve
the optimization of the joint eMBB/URLLC system. For
instance, in [17], the authors used a flexible transmission
interval selection policy and applied supervised learning to the
joint optimization. However, their studies scheduled eMBB
and URLLC unevenly (i.e., scheduled URLLC in advance).
The authors in [18] proposed a long-term monitor system
under the changing environment, which balanced the cost of
eMBB traffic and the gain of URLLC services. Remarkably,
the previous research has also shown that deep reinforcement
learning (DRL) has significant advantages in enhancing the
eMBB requirements in such a coexistence system. E.g., In
[8], the authors proposed a model-free DRL to minimize the
impact of puncturing on eMBB users during the URLLC
transmission. The deep deterministic policy gradient based
method was used in their system to solve the continuous action
domain for the resource scheduling. Besides, [19] reduced
the impact of URLLC immediate scheduling policy on eMBB
utility while considering the variance of eMBB data rate. The
DRL-based model intelligently assigned the URLLC packets
among the eMBB users.

The existing studies have already achieved significant out-
comes on the design of URLLC scheduling policy when
it coexists with eMBB traffic, e.g., [13]–[18]. However, in
general, all of the works mentioned above assumed that the
incoming URLLC packets could only either be served or
dropped immediately at the beginning of each mini-slot, which
only ensured the URLLC latency requirement but caused
packet losses to the URLLC. The work in [20] considered
a queuing mechanism for URLLC traffic, where each trans-
mission channel had an individual queue. It is assumed that
the packet arrivals are evenly distributed between different
queues. The base station (BS) makes the puncturing decision
of each eMBB channel separately in turns at the beginning
of each time slot. The even distribution of packet arrivals and
separate decision making of different channels would lead to
more drops depending on the channel conditions. Therefore,
in this paper we propose a new queuing scheme with a single
queue wherein the dynamic scheduling of the multi-channel
system could be managed jointly and hence more effectively.
We have implemented the results of [20] as a benchmark and
verified the effectiveness of the new scheduling scheme as

compared with [20].

B. Motivation and Contributions

In this paper, we propose a novel queue-based allocation
mechanism for the URLLC traffic in a multi-channel system
and aim to improve the URLLC reliability within the tar-
get latency by simultaneously queuing/transmitting multiple
URLLC packets in each mini-slot over multiple channels. The
main contributions of this paper are summarized as follows:
• We study the URLLC scheduling in a coexisting

URLLC/eMBB downlink transmission system. In such
a joint system, we assume the BS has already allocated
the radio resources among the eMBB users on different
channels at the beginning of each eMBB time slot before
scheduling the URLLC packets. We propose a M/G/∞
queuing mechanism for infrequent URLLC traffic and
derive the expressions that analyze the URLLC queuing
mechanism, including the number of queuing packets and
the instantaneous mean latency of the served URLLC
packets. The differences between the analytical and nu-
merical results are below 10−3. The results also show that
the proposed queuing mechanism can wisely adjust the
number of URLLC queuing packets to balance the trade-
off between the reliability and latency requirements of
URLLC services.

• We apply the puncturing scheduling for the joint
eMBB/URLLC system and propose an objective function
that maximizes the total normalized eMBB through-
put and the URLLC utility among all possible system
states. The URLLC utility is quantified as the success-
ful transmission probability of URLLC traffic with no
drop over all channels which considers the probabilities
of successful transmission of URLLC traffic on each
channel and the probability of not dropping URLLC
packets. However, it is complicated to derive the closed-
form of the steady state probabilities by analyzing the
dynamic of the URLLC queue. The standard optimization
techniques cannot be used in the case of solving a black-
box objective function, thus, in this paper, we apply
the Bayesian optimization (BO) algorithm to solve the
optimization problem. Besides, we use the additive struc-
ture with the BO algorithm to reduce high dimensions
by decomposing the original search space into several
sub-spaces. We implement different acquisition functions
of the BO algorithm and use the random search as a
comparison to show the better performance of BO. The
results show that the BO algorithm can quickly reach the
optimal point with a limited training set.

• We evaluate the performance of the proposed algorithms
by comparing them with two benchmarks. One is the
optimization problem for the case of without the queuing
scheme, another is the proposed mechanism in [20].
Based on the results, firstly, our one queue scheme shows
the flexibility of the URLLC scheduling compared to
[20], where the scheduling of the URLLC is rigid. Beside,
the scheme without queuing is more sensitive to the total
number of channels and the value of URLLC arrival
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Figure 1. Scheduling policy for URLLC in the joint eMBB/URLLC system
with the proposed M/G/∞ queuing mechanism. The served URLLC packets
are shown in red rectangles at each mini-slot. New arriving and queue backlog
packets in mini-slot m are shown in black and yellow colours, respectively.

loads. Without enough channels, the mean value of total
eMBB throughput of the no queuing mechanism is signif-
icantly lower than the queue-based scheme. Moreover, we
define the URLLC outage probability as the probability
that there exists dropped URLLC packets in a mini-
slot. A slight increase in the number of transmission
channels can significantly improve the URLLC outage
probability of the proposed queuing scheme. However,
the URLLC outage probability of the scheme without
queuing hardly meets the 3GPP requirements, even with
a large number of channels. These results show that
our proposed queuing system can enhance both the total
normalized eMBB throughput and URLLC requirements.

C. Organisation

The rest of this paper is organized as follows. Section II
introduces the multi-channel scheduling policy for URLLC
with queuing in coexistence with eMBB. Moreover, the
working principles of the URLLC queuing mechanism are
explained and an optimization problem is formulated to find
the optimal puncturing weights. In Section III, the dynamics
of the proposed queuing are mathematically analyzed aiming
to characterize the achievable performance of URLLC and
eMBB traffic depending on the puncturing weights. Section IV
reviews the BO framework with additive structures and focuses
on developing an algorithm based on BO to optimize the
URLLC scheduling. The detail of using the additive structure
algorithm to reduce the high-dimension problem into a serial
of low-dimensional sub-problems is also explained. Section
V presents the numerical results to evaluate the performance
of the queuing mechanism and the developed algorithm for
URLLC scheduling. Finally, the conclusions are given in
Section VI.

Notations: We use E[.] and P[.] to denote the expectation
and the probability respectively. N and N+ are represented as
the set of natural numbers and positive integers, respectively.

Table I
SUMMARY OF NOTATIONS

Notation Definition
B, M Set of channels and mini-slots, respectively.
Cembb Set of possible channel rates for an eMBB user.
Curllc Set of probability of successful transmission for URLLC.
m, t URLLC time slot and eMBB time slot, respectively.

sb,sburllc The eMBB channel rate and probability of successful
transmission for URLLC at channel b ∈ B, respectively.

S, Ps Set of possible system state and its PMF, respectively.
WWW Matrix of URLLC puncturing weights.
π Bernoulli generate variable for URLLC puncturing.

Am, Csss
m Number of URLLC packets that arrive and mini-slots

allocated to URLLC in m ∈M, sss ∈ S, respectively.
Qsss

m−1 Number of URLLC packets already stored in the queue
before m ∈M, and in sss ∈ S.

Dsss
m, µsssm Number of dropped and served URLLC packets

in m ∈M and sss ∈ S, respectively.
pa, psssQ, psssc The PMF of Am, Qsss

m−1 and Csss
m, respectively.

Usss
embb Total normalized eMBB throughput in sss ∈ S.
Usss

urllc URLLC utility in sss ∈ S.
Ψs State transition probability of URLLC queue in sss ∈ S.

f(.), fsss(.) Black-box objective and its sub-objective function.
Ns Number of subspace/combinations for S.
I Decomposed input space
d Input space of black-box function.
N (r) Training data set of proposed solution with r data pairs.

ρ0(.), K0(.) Prior mean function and covariance matrix, respectively.
ρr(.), σ2

r(.) Posterior mean and variance, respectively.
g(.) Acquisition function.
ξ Trade-off parameter between exploitation and exploration.
R Maximum number of iterations of proposed solution.
λ URLLC arrival rate.
Pout URLLC outage probability.
α Mean latency of the served URLLC packets.
β Number of the served URLLC have been queued.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink wireless system that contains a base
station (BS) to simultaneously provide eMBB and URLLC
services. The system frequency resources are divided into B
channels of equal bandwidth. We study the URLLC scheduling
over a set of channels B = {1, 2, . . . , B} in coexistence
with eMBB traffic. These channels are primarily scheduled
for eMBB transmission and will be shared with URLLC
traffic adopting a puncturing policy as proposed in [15]. The
puncturing policy will be optimally designed to simultane-
ously minimize the eMBB throughput loss due to URLLC
transmission and enhance the URLLC reliability measure. For
satisfying the URLLC latency requirement, it is assumed that
the system operates on two different timescales as proposed
by 3GPP [21], i.e., the eMBB time slot t, at the beginning
of which the eMBB users are scheduled, and mini-slot m to
schedule the sporadic URLLC packets. Each of the eMBB
time slot is divided into M equal size mini-slots. The set
of mini-slots is represented by M = {1, 2, . . . ,M}. The
frequency-time spectrum of the downlink transmission system
on different scheduling intervals is illustrated in Fig. 1 along
with Table I listing the notations used in this work.

We assume block fading for eMBB users where the channel
state of an eMBB user at one frequency channel remains con-
stant during one time slot. The set of possible channel rates for
an eMBB user is represented by Cembb = {Cembb,1, Cembb,2,
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. . . , Cembb,Nembb
c
}, where Nembb

c is the cardinality of the set
Cembb. Let Sembb = [sb] be the 1 × B vector of the system
state of eMBB that represents the instantaneous channel rates
of eMBB users over B channels at current time slot, where
sb ∈ Cembb denotes the channel rate of the eMBB user
transmitting at channel b ∈ B. Moreover, we consider the
probability of successful transmission as the system state
of URLLC. The set of possible probabilities of successful
transmission for URLLC wireless channels is denoted by
Curllc = {Curllc,1, Curllc,2, . . . , Curllc,Nurllc

c
}, where Nurllc

c

is the cardinality of the set Curllc. Let Surllc = [sburllc] be
the 1 × B vector to denote the probabilities of successful
transmission over all channels at current time slot. sburllc ∈
Curllc represents the probability of successful transmission of
URLLC traffic on channel b ∈ B at current time slot. We use
S = [Surllc, Sembb] to denote the system state of these two
kinds of traffic; there are Ns = (Nurllc

c Nembb
c )B combinations

for S and the set of all possible combinations is denoted as
S = {sss1, . . . , sssNs

}. The probability mass function (PMF)
of S is represented by Ps(sss) = P

(
S = sss

)
, Ps(sss) ∈ [0, 1],

∀sss ∈ S. The wireless system undergoes the channel variations
in each eMBB slot which are modeled as an independent and
identically distributed random process over the set of CeMBB

and Curllc. Thus, our scheduler is assumed to know (or able to
estimate over time) the distribution of system state (i.e., Ps(sss))
across the eMBB slot.

The URLLC transmissions are determined and realized by
the puncturing weights selected in different channels given
sss. Suppose WWW =

[
wsssb
]
, ∀b ∈ B, ∀sss ∈ S is the B × Ns

matrix of URLLC puncturing weights, where wsssb ∈ [0, 1] is the
weight of puncturing on the channel b in system state sss. We
assume that the puncturing weights are the same over different
mini-slots of one time-slot and hence time-homogeneous over
one time-slot. The realization of each puncturing weight is
random based on the variable πsssb,m, which is generated using
a Bernoulli distribution with the success probability of wsssb at
the beginning of each mini-slot. If πsssb,m = 1, a URLLC packet
will be overridden upon the scheduled eMBB transmission
on channel b in mini-slot m when the system state is sss. We
assume that each channel can transmit at most one URLLC
packet per mini-slot. Otherwise, πsssb,m = 0 and channel b
will not be punctured by any URLLC packet in mini-slot m
when the system state is sss. Given πsssb,m, the total number of
mini resource blocks allocated to URLLC puncturing over all
channels in mini-slot m can be computed as

Csssm =
∑
b∈B

πsssb,m. (1)

B. URLLC Scheduling Policy with Queuing

We propose the multi-channel scheduling for the URLLC
services with one M/G/∞ queue, which can simultaneously
serve multiple URLLC packets at the beginning of each mini-
slot to be punctured over different channels depending on
πsssb,m. In particular, M means we consider Poisson URLLC ar-
rivals, G means that service times have a General distribution,
and∞ specifies that the queue length is considered infinite. As
supported by [21], we adopt Poisson URLLC packet arrivals

that enable us to analytically derive the expected number
of served URLLC packet and the probability of no drop.
Moreover, we consider infinite queue length in this work so
that we could analyze the number of URLLC packet drops
that caused by the delay of URLLC scheduling rather than
the limitation of the queue.

The proposed queuing mechanism enhances the URLLC
reliability by not immediately dropping unserved packets and
keep them in a queue while meeting the strict latency require-
ments. 3GPP has suggested an extreme latency requirement
for URLLC, i.e., each URLLC packet should be served
within 0.3 milliseconds [11], [21], [22]. In addition, 3GPP
advises that the length of each URLLC mini-slot is 0.125
milliseconds. Accordingly, we establish the working principle
of URLLC queuing mechanism as the URLLC packets can
wait in the queue until next mini-slot if it cannot be transmitted
immediately. If a URLLC packet has already queued for one
mini-slot and will not be transmitted in the next mini-slot, it
will be dropped from the queue and counted as a loss.

We assume that URLLC packets have the same fixed packet
size and randomly arrive in each mini-slot. Let Am denote
the number of URLLC packets that arrive at the queue line
between mini-slot m− 1 and mini-slot m.

Suppose PMF of Am is denoted by pa(y) as

pa(y) = P(Am = y),∀y ∈ N, (2)

where pa(y) ∈ [0, 1] and
∑
y∈N pa(y) = 1. Let λ =

E
[
Am
]

denote the average URLLC arrival rate (in units of
packets/mini-slot).

Let Qsssm−1 be the number of URLLC packets already stored
in the queue before the mini-slot m in system state sss. Thus,
based on the working principle of the queuing mechanism, if
in mini-slot m system state sss, the number of served URLLC
packets µsssm and the number of dropped URLLC packets Dsssm
can be derived as

µsssm = min
(
Csssm, Q

sss
m−1 +Am

)
, (3)

Dsssm = max
(
Qsssm−1 − µsssm, 0

)
. (4)

Accordingly, in system state sss ∈ S, the one-step queuing
equation for the queue link is expressed as

Qsssm = Qsssm−1 +Am − (µsssm +Dsssm) ,∀m ∈M. (5)

Fig. 2 illustrates an example on how the URLLC queuing
mechanism operates in mini-slots. Suppose in this case that the
number of provided channels is not sufficient to transmit the
URLLC backlog packets in mini-slot m, i.e., Csssm < Qsssm−1.
The reserved queue backlog will be dropped and the newly
arrived packets will be backlogged in the queue backlog, i.e.,
Qsssm = Am. In the second case, when the system provides
enough transmission opportunities for URLLC queue backlogs
and there are some surplus opportunities for the newly arrived
packets, there will be no drops and the queue backlog in the
next mini-slot becomes the reserve of newly arrived packets.

C. Problem Formulation

Here, we formulate the URLLC multi-channel scheduling
problem as a stochastic optimization problem that optimally
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Figure 2. Illustration of the working principle of URLLC queuing mechanism.

determines the puncturing weights for all channels and all
system states. Since the URLLC packets will be punctured
on the ongoing eMBB transmissions, the URLLC scheduling
policy should strike the balance between mitigating the adverse
impact of URLLC puncturing on the average eMBB through-
put and satisfying the URLLC requirements. Therefore, we
formulate an optimization problem aiming to maximize the
total normalized eMBB throughput and URLLC utility. The
URLLC utility is quantified as the successful transmission
probability of URLLC traffic with no drop over all channels
in the system state sss ∈ S.

Accordingly, the optimization problem is formulated as:

max
WWW

∑
s∈S

Ps(s) (Usssembb + Usssurllc) , (6a)

s.t., wsssb ∈ [0, 1],∀b ∈ B,∀s ∈ S, (6b)

where Usssembb denotes the total normalized eMBB throughput
and Usssurllc represents URLLC utility over all channels in system
state sss ∈ S. The constraint (6b) ensures that the value of
puncturing weights could only vary between zero and one.

The URLLC utility Usssurllc is defined as the product of the
probability that no URLLC packet would be dropped in each
mini-slot (i.e., P(Dsssm = 0)) and the successful transmission
probability of URLLC traffic over all channels in system state
sss ∈ S. Thus, Usssurllc is expressed as

Usssurllc = P(Dsssm = 0)
∑
b∈B

sburllc
wsssb∑

b′∈B w
sss
b′
. (7)

The total eMBB throughput in system state sss ∈ S is defined
as the total eMBB rate over all channels (i.e.,

∑
b∈B s

b) scaled
by (1−wsssbE [µs

m]/
∑
b∈B w

sss
b) that is the ratio of one time slot

the eMBB used excluding URLLC transmissions. In particular,
wsssbE [µs

m]/
∑
b∈B w

sss
b represents the expected number of mini-

slots punctured for URLLC service on channel b to the total
number of mini-slots in one eMBB slot in system state sss ∈ S.

Therefore, the total normalized eMBB throughput in system
state sss ∈ S can be calculated as

Usssembb =

∑
b∈B s

b
(

1− wsss
b∑

b∈B w
sss
b
E [µs

m]
)

∑
b∈B s

b
. (8)

By solving the optimization problem (6) and obtaining the
optimal puncturing weights, the proposed scheduling policy
enhances the URLLC reliability by maximizing Usssurllc in (6),
while the URLLC latency requirement is supported by the
URLLC queuing mechanism. To solve (6), we need to derive
E [µs

m] and P(Dsssm = 0) by studying the queue dynamics.
The next section provides the queuing analysis to establish
the objective function as the function of WWW .

III. PERFORMANCE ANALYSIS WITH QUEUING

The optimization equation in (6) contains two metrics that
demonstrate the efficacy of the URLLC scheduling policy
when coexisting with eMBB services, i.e., the total normalized
eMBB throughput and URLLC utility. In this section, we
mathematically analyze the URLLC queuing mechanism in
order to derive the objective function as a function of WWW .

A. eMBB Throughput Analysis
Here, we start the analysis by studying the eMBB through-

put in (8). This requires the analysis of E [µs
m]. Let psss,mµ (x)

denote P
(
µsssm = x

)
where x represents the number of served

URLLC packets, x ∈ {0, . . . , B}. Accordingly, the expected
number of served URLLC packets in mini-slot m system state
sss ∈ S can be expressed as

E
[
µs
m

]
=

B∑
x=0

x · psss,mµ (x). (9)

Therefore, the first step to find the expected value of served
URLLC packets is deriving the PMF of served URLLC
packets, i.e., psss,mµ (x). Considering (3), the event of

(
µsssm = x

)
occurs when either (Csssm = x) or (Qsssm−1 + Am = x).
Consequently,

psssµ(x) = P(Csssm = x)P(Qsssm−1 +Am ≥ x)

+ P(Csssm > x)P(Qsssm−1 +Am = x),∀x ∈ B. (10)

Therefore, to derive psssµ(x), we need to calculate psssc(x) =
P(Csssm = x) and P(Am +Qsssm−1 = x).

Let us start with the derivation of psssc(x) based on (1).
Considering that the event (πsssb,m = 1) happens with the
probability of wsssb , psssc(x) can be derived as a function of
puncturing weights as

psssc(x) =
∑
KC∈FC

∏
δ∈KC

wsssδ
∏

δ′∈KC′
(1− wsssδ′), (11)

where FC contains all the combinations that choose x channels
out of B. Also, KC and KC

′
denote possible subsets of FC and

its complementary set, respectively. Moreover, δ ∈ KC denotes
the channels that are chosen to transmit URLLC packets and
δ
′ ∈ KC

′
denotes the channels in which no URLLC puncturing

happens. According to (11), note that psssc is time-homogeneous
across mini-slots in one eMBB slot and does not depend on
m. This is because the puncturing weights are also time-
homogeneous.

Moreover, the probability of P(Qsssm−1 + Am = x) can be
written as

P(Am +Qsssm−1 = x) =

x∑
y=0

pa(y) · psssQ(x− y), (12)
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where pa(y) = P(Am = y) is the PMF that the number of
the newly arrived URLLC packets is Am = y as introduced
in (2) and psssQ(x− y) represents the steady state probability of
the URLLC queuing backlog. In particular,

psssQ(x− y) = P(Qsssm−1 = x− y). (13)

Based on (12), the next step of deriving E
[
µs
m

]
in order to

obtain the total normalized eMBB throughput is to find the
steady state probability of the URLLC queue backlog.

B. Steady State Probability of the URLLC Queuing Mecha-
nism

To obtain the steady state probabilities of the URLLC queue
backlog, we apply the Markov chain model considering the
transition probabilities among them [23]–[25]. In particular,
we assume that the state of the Markov chain represents the
number of URLLC packets backlogged in the queue that can
change from zero to infinity. State zero represents the empty
queue. The state transition probability matrix is denoted by
Ψs = [ψs

n,k] where

ψs
n,k = P(Qsssm = k|Qsssm−1 = n),∀n, k ∈ N, (14)

and,
∞∑
k=0

ψsssn,k = 1. (15)

The steady-state solution of the Markov chain in system
state sss ∈ S, denoted by psssQ(q), q ∈ N, can be calculated as
[23]

psssQ(q) = F (0q,q)[F (Ψsss − I)]−1, (16)

where the output of the function F (A) is the matrix A with
its right-most column replaced with all 1’s. I is the identity
matrix of size q, 0q,q denotes the zero matrix of size q × q.

Proposition 1: The time-homogeneous transition probabili-
ties of the URLLC queuing mechanism given sss ∈ S over eMBB
slot can be computed as:

ψsssn,k =



pa(k)

min{B,n}∑
x=0

psssc(x) +

B−n∑
θ=1

( θ∑
y=k

pa(y)
)
psssc(n+ θ),

if k = 0, ∀n ∈ N,

pa(k)

min{B,n}∑
x=0

psssc(x) +

B−n∑
θ=1

pa(k + θ)psssc(n+ θ),

if ∀k ∈ N+, ∀n ∈ N.
(17)

Proof: Given sss ∈ S, the steps of finding the transition
probabilities ψs

n,k, ∀n, k ∈ N can be divided into two cases
as follows:

Case 1: In this case, the newly arrived packets cannot be
transmitted in the current mini-slot and need to be backlogged
in the queue. Hence, Qsssm = Am.

There are two scenarios in which Case 1 could occur.
First, the number of transmission channels is not enough (i.e.,
B < Qsssm−1 as shown in Table. II part (a)). In this scenario, the

Table II
THE ANALYSIS OF THE URLLC QUEUING MECHANISM IN MINI-SLOT

m ∈M GIVEN sss ∈ S .

Provided mini-slots Served packets Drops Updated backlog
Csss

m µsssm Dsss
m Qsss

m

Part (a): The Parameters of Queue when Qsss
m−1 = n > B

0 0 n Am

1 1 n-1 Am

...
...

...
...

B B n-B Am

Part (b):The Parameters of Queue when Qsss
m−1 = n ≤ B

0 0 n Am

1 1 n-1 Am

...
...

...
...

n n 0 Am

n+1 n+min(Am,1) 0 Am-min(Am,1)
n+2 n+min(Am,2) 0 Am-min(Am,2)

...
...

...
...

n+(B-n) n+min(Am,B-n) 0 Am-min(Am,B-n)

number of provided mini-slots for URLLC packets is always
less than the number of queue backlog (i.e., Csssm < Qsssm−1
in mini-slot m). As a result, URLLC packets are bound
to be lost, so the number of dropped URLLC packets is
Dsssm = Qsssm−1 − µsssm = Qsssm−1 − Csssm > 0. Consequently,
the newly arrived URLLC packets will be queued and hence
Qsssm = Am. Therefore, the transition probability of such a
scenario in system state sss ∈ S can be calculated as

ψs
n,k = pa(k)

B∑
x=0

psssc(x),∀k ∈ N, n > B. (18)

The second scenario of Case 1 is when B > Qsssm−1, but
the number of provided resource blocks is no larger than the
number of queuing packets (i.e., Csssm ≤ Qsssm−1 ≤ B as shown
in Table. II part (b)). In this scenario, the next queue state
only depends on the value of Am. The transition probabilities
of such a scenario can be calculated as

ψs
n,k = pa(k)

n∑
x=0

psssc(x),∀k ∈ N, 0 ≤ n ≤ B. (19)

To sum up, the transition probabilities of the two scenarios
for Case 1 can be combined as the first term in (17), i.e.,
pa(k)

∑min{B,n}
x=0 psssc(x), for any k ∈ N.

In Case 2, the number of provided mini-slots is larger than
the number of URLLC backlog packets, and the BS starts to
allocate mini-slots for transmitting the newly arrived packets,
i.e., Qsssm−1 < Csssm ≤ B as shown in Table. II gray parts. Let
θ, θ ∈ {1, . . . , B − n} denote the number of provided mini-
slots for transmitting the newly arrived URLLC packets. In
this case, the number of provided mini-slots is expressed as
Csssm = n + θ, Csssm ∈ {n + 1, . . . , B}. In Case 2, the queuing
mechanism will not drop any URLLC packets from the queue
backlog (i.e., Dsssm = 0). If the number of newly arrived
URLLC packets is larger than θ, the remnant URLLC packets
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will be queued in the next mini-slot, i.e., Qsssm = Am − θ > 0,
k ∈ N+. Otherwise, all the new arriving URLLC packets
will be transmitted and the next state goes to state zero, i.e.,
Am ≤ θ, Qsssm = Am − Am = 0, k = 0. The transmission
probabilities in system state sss ∈ S of Case 2 are the second
terms in (17), i.e.,

∑B−n
θ=1 pa(k + θ)psssc(n + θ) if k = 0 and∑B−n

θ=1 pa(k + θ)psssc(n + θ) if k ∈ N+. This completes the
proof. �

Therefore, with the transition probability equation in (17),
we can compute the steady-state probability of the queue based
on (16). Having the steady-state probabilities of the queue, the
PMF of the number of served packets can be derived based
on (10), (11), and (12). Consequently, by substituting (10) into
(9), E

[
µs
m

]
can be found.

C. No-drop Probability of URLLC Packets

The second performance metric of the URLLC scheduling
policy is the URLLC utility, which depends on the probability
of not dropping URLLC packets in each mini-slot based on
(7).

Proposition 2: The probability of not dropping URLLC
packets in one mini-slot in system state sss ∈ S can be expressed
as

P(Dsssm = 0) =

B∑
q=0

psssQ(q)

B∑
x=q

psssc(x), (20)

where, psssQ(q) and psssc(x) denote the steady state probability of
the URLLC queuing backlog and the PMF of provided mini-
slots, as introduced in (16) and (11), respectively. Accordingly,
the no-drop probability of URLLC depends on the distribution
of URLLC arriving packets and eMBB puncturing weights and
thus is the same over different mini-slots of one time-slot (i.e.,
time-homogeneous over one time-slot).

Proof: The probability of not dropping URLLC packets can
be calculated as

P(Dsssm = 0) =
∑
q∈N

psssQ(q)P(Dsssm = 0|Qsssm−1 = q), (21)

where P(Dsssm = 0|Qsssm−1 = q) denotes the conditional proba-
bility that the number of dropped packets is zero given the
number of backlogged packets is Qsssm−1 = q ∈ N. This
probability can be written as

P(Dsssm = 0|Qsssm−1 = q) =
P(Dsssm = 0 ∩Qsssm−1 = q)

psssQ(q)
. (22)

If there is no dropped URLLC packet, the number of provided
mini-slots for transmitting URLLC packets (i.e., Csssm) should
be no less than the URLLC queue backlog packets (i.e.,
Qsssm−1). Thus,

P(Dsssm = 0 ∩Qsssm−1 = q) = P(Csssm ≥ Qsssm−1|Qsssm−1 = q)

=

B∑
x=q

P(Csssm = x), ∀q ∈ N,∀sss ∈ S,∀m ∈M. (23)

Based on (21)-(23), the no-drop probability is updated as (20).
This completes the proof. �

IV. BAYESIAN OPTIMIZATION FOR URLLC SCHEDULING

With the mathematical analysis of the queue dynamics,
it becomes apparent that finding the closed-form of the
objective function in (6) is infeasible because there is no
closed-form solution for the steady-state probabilities of the
URLLC queue. In such a case, the optimization problem can
be solved as a black-box function where the inputs are the
puncturing weights. For each input, the black-box function can
be computed. However, the computational cost of acquiring
the black-box function for each possible input is high since
the representation of the objective function and its derivatives
are uncertain and unknown [26], [27]. In other words, during
the evaluation, only the outputs of the black-box function for
each input will be required and there is no need to analyze the
first or second-order derivatives. This is also called “derivative-
free” problem, which prevents the use of first and second-order
derivatives in optimization algorithms, as required in gradient
descent, Newton’s, and quasiNewton methods [28]. Thus,
it has always been challenging to shorten the evolutionary
computation time for stochastic black-box optimization.

Recently, many researchers have been focused on solving
the black-box optimization based on the BO algorithm [29]–
[31], which is an efficient optimization method to approach
a global maximum (or minimum) of an unknown objective
function by iteratively developing a global statistical model
of it. BO algorithm has two critical elements that need to be
chosen appropriately for the different objective functions [31],
[32]. The first one is the surrogate model, i.e., a substitute
function used to hypothesize the optimized black-box function.
Starting with a prior model over the function and a likelihood,
at each iteration the surrogate model can compute the posterior
distribution by conditioning on the previous evaluations of the
objective function. Then, the second critical element of BO,
acquisition function, is constructed, which maps the belief of
the objective function by measuring the foreground of each
position in the input space. After that, the goal is to find the
input that maximizes the acquisition function and uses it as
a new sampling point for the black-box function evaluation.
BO puts the new input in the black-box function to obtain the
corresponding output, the surrogate model is then updated.
This completes one iteration of the BO loop.

In this section, we first introduce the fundamentals of the
surrogate model and acquisition functions. After that, the
principles of additive structure to solve high dimensional BO
problems will be presented. The proposed solution of (6)
using the BO and additive structure algorithms will also be
explained.

A. Surrogate Model

We employ the Gaussian process (GP) regression [33]
for the surrogate model that provides a Bayesian posterior
probability distribution of the objective function for different
values of input considering a prior with multivariate Gaussian
distribution. GP is a commonly used surrogate model for
BO since it can efficiently and effectively summarize a large
number of functions, smooth the transition with plenty of
observations and thus better quantify the uncertainty in the
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surrogate model. Besides, the elegant marginalization of the
Gaussian distribution contributes to calculating the edges and
conditions of the closed-form.

Suppose the black-box objective function in (6) is denoted
as

f(WWW ) =
∑
s∈S

Ps(s)
(
Usssembb + Usssurllc

)
, (24)

whereWWW denotes the matrix of input variables. The evaluation
of f(WWW ) is restricted to sampling at input WWW and getting
a response. The BS has r groups of input variables WWW and
the corresponding values extracted from f(WWW ), denoted as
N (r) =

{(
WWW 1, f(WWW 1)

)
, . . . ,

(
WWW r, f(WWW r)

)}
, the resulting

prior distribution of (24) with the training set N (r) under
the GP algorithm is assumed as

f(WWW 1:r) ∼ N
(
ρ0(WWW 1:r),K0(WWW 1:r,WWW 1:r)

)
, (25)

where, WWW 1:r indicates the input sequence {WWW 1, . . . ,WWW r},
and f(WWW 1:r) denotes the corresponding outputs, f(WWW 1:r) =
[f(WWW 1), ..., f(WWW r))]. Also,

ρ0(WWW 1:r) = [ρ0(WWW 1), ..., ρ0(WWW r)] (26)

where ρ0 is the prior mean function, which is set to zero as
GPs are flexible enough to model the mean arbitrarily well
[34]. Moreover, K0(WWW 1:r,WWW 1:r) is the covariance matrix and
represented as

K0(WWW 1:r,WWW 1:r) =

κ0(WWW 1,WWW 1) . . . κ0(WWW 1,WWW r)
...

. . .
...

κ0(WWW r,WWW 1) . . . κ0(WWW r,WWW r).


(27)

In this paper, κ0(WWW 1:r,WWW 1:r) follows the squared exponential
covariance function, which specifies the covariance between
each pair of input variables as

κ0(WWW p,WWW q) = exp (−0.5||WWW p −WWW q||2). (28)

BO combines the prior beliefs about f(WWW ), updates the
priors with the training set, and finally obtains the posterior
to approximate the black-box function. Given the observations
and Gaussian prior, the posterior distribution of f(WWW ) condi-
tioned on N (r) can be obtained as [28], [34]

f(WWW )|N (r) ∼ N
(
ρr(WWW ), σ2

r(WWW )
)

(29)

where ρr(WWW ) and σ2
r(WWW ) denote the posterior mean and

variance, which are calculated as

ρr(WWW ) = K0(WWW 1:r,WWW )TK0(WWW 1:r,WWW 1:r)
−1f(WWW 1:r), (30)

and,

σ2
r(WWW ) = K0(WWW,WWW )

−K0(WWW 1:r,WWW )TK0(WWW 1:r,WWW 1:r)
−1K0(WWW 1:r,WWW ). (31)

Based on the posterior distribution, in BO, an acquisition
function will be constructed to quantify the evaluation of
the objective function at a new sampling point WWW . In other
words, the acquisition function is computed based on the
current posterior distribution, then, the next sampling point
for observation and evaluation is selected by the maximizer of
the acquisition function over the objective domain.

B. Acquisition Function

The acquisition function of BO is used to propose the next
sampling point in the search space where there is a trade-
off between exploitation and exploration. The goal of both
exploitation and exploration is to maximize the acquisition
function to determine the next sampling point. However, the
former refers to sampling in places where the surrogate model
predicts a high objective, and the latter refers to sampling in
places where the prediction uncertainty is high.

Given the current observations N (r), in each iteration
the position of the next evaluation point can be decided by
maximizing the acquisition function (i.e., denoted as g(.)). In
particular, the next sample will be selected as

WWW r+1 = arg max g(WWW |N (r)). (32)

The standard acquisition functions developed for BO are
Expected Improvement (EI), Probability of Improvement (PI),
and upper confidence bound (UCB) [28], [31]. The perfor-
mance of the acquisition function depends on the choice of
the surrogate model. The derived expressions of the above
three commonly used acquisition functions based on the
GP hyperparameters and previous observations set N (r) are
presented as follows.

1) Expected Improvement: The principle of the Expected
Improvement algorithm is to maximize the expected improve-
ment over the current best [28], [35], and the expression of
Expected Improvement is defined as

gEI(WWW |N (r)) = E
[

max
(
f(WWW )− f∗r , 0

)]
, (33)

where f∗r = maxj≤r f(WWW j) is the largest observed value
in N (r). Under GP, the expression of (33) is analytically
computed based on (29) as

gEI(WWW |N (r)) =
(
ρr(WWW )− f∗r − ξ

)
Φ(Z) + σr(WWW )φ(Z),

(34)

where Z =
ρr(WWW )−f∗r−ξ

σr(WWW ) . Moreover, Φ and φ are the CDF and
Probability Density Function (PDF) of the standard normal
distribution, respectively. Parameter ξ ≥ 0 in (34) determines
the amount of exploration during optimization [29], [36].
With higher values of ξ, the acquisition criterion selects the
next sampling point which has a larger surrogate variance
(i.e., σ2

r(.) in (31)). Conversely, with lower values of ξ, the
acquisition criterion results in selecting the next sampling
point with a larger surrogate mean value (i.e., ρr(.) in (30)).

2) Probability of Improvement: The strategy of Probability
of Improvement is to maximize the probability of improving
the best current value [37]. Under GP, this algorithm is
analytically computed as

gPI(WWW ) = Φ

(
f∗r − ρr(WWW )

σr(WWW )

)
. (35)

3) Upper Confidence Bound: The idea of the upper con-
fidence bound is to maximize the regret in the optimization
process [28], [38]. Under GP, the upper confidence bound is
analytically computed as

gUCB(WWW ) = ρr(WWW )− ξσr(WWW ). (36)



9

In the simulation section, we implemented all the acquisition
functions above to compare the performance among them.

C. Additive Structure

BO is a common technique to optimize an expensive-
to-evaluate d-dimensional black-box objective function [32].
However, the algorithm meets challenges when the input space
of the objective function is larger since the reliable search and
estimation of the surrogate model and acquisition functions in
higher dimensional spaces may require more evaluations. In
this paper, we apply the additive structure to reduce the high
dimensional input space of BO; this technique is an advanced
algorithm that can accelerate the search and optimization
efficiently [39], [40].

The additive structure assumes that the black-box objective
function is an additive function as a sum of sub-functions of
all combinations of lower dimensional coordinates. It has been
proved in [40] that an additive function only depends linearly
on d even though it depends on all d input dimensions. Thus,
the working principle of the additive structure in this paper
is dividing the high dimensional input space into multiple
sub-spaces, so that the number of variables in each sub-space
is small, e.g., less than twenty. Accordingly, this technique
decomposes the original black-box function in to multiple
sub-functions. Since the acquisition function can be optimized
component-wise, for each sub-black-box function, we carry
out the basic BO optimization, and update the surrogate
model and acquisition function in each sub-space. Finally, the
posterior distribution of the original black-box function is the
sum of the sub-posterior distributions.

Consider the high-dimensional search space of the black-
box function f(WWW ) is I = [0, 1]d, where d = B ×Ns. Based
on the additive structure, the original high dimensional input
space is decomposed into Ns disjoint sub-spaces, each having
merely B dimensions. We assume the decomposed input space
is I = {Isss1 , . . . , IsssNs

}, where, Isss is the sub-space in system
state sss, ∪sss∈{sss1,...,sssNs}Isss = I, and Isssi ∩ Isssj = ∅, ∀sssi 6= sssj ,
∀sssi, sssj ∈ {sss1, . . . , sssNs

}. The input variables for the sub-space
Isss is the 1×B vector of the puncturing weights of different
channels given sss, denoted by wwwsss.

Accordingly, we decompose f(WWW ) into Ns sub-objective
functions as the following additive form,

f(WWW ) =

sssNs∑
sss=sss1

Ps(sss)fsss(wwwsss), (37)

where Ps(sss) is the PMF in system state sss and the sub-objective
function fsss(wwwsss) is expressed as

fsss(www
sss) = Usssembb + Usssurllc. (38)

At each iteration of BO, the given observations N (r)
is firstly decomposed into Ns groups, Nsss(r) denotes the
observations set that contains r numbers of input wwwsss and the
corresponding output fsss(wwwsss). Based on the decomposed obser-
vation groups, the prior distribution of each of the component
fsss(www

sss),∀sss ∈ {sss1, . . . , sssNs
}, is obtained independently as

fsss(www
sss
1:r) ∼ N

(
ρsss0(wwwsss1:r),K

sss
0(wwwsss1:r,www

sss
1:r)
)
, (39)

Algorithm 1: BO of puncturing weights.
1: Find f(WWW ) based on (24) at r0 different eMBB

puncturing weight matrices values. Set r = r0.
2: while r ≤ R do
3: Decompose f(WWW ) into Ns parts based on (37).
4: Decompose both the observations N (r) and search

space into Ns parts.
5: for sss ∈ {sss1, . . . , sssNs} do
6: Find the GP prior distribution of fsss(wwwsss).
7: Find the posterior mean and variance of fsss(wwwsss)

using Nsss(r) and update the posterior distribution.
8: Find the next sampling point as

wwwsssr+1 = arg max
wwwsss

g(wwwsss|Nsss(r)).

9: Obtain output sample, i.e., fsss(wwwsssr+1).
10: end for
11: Update the new sampling point for f(WWW ) as

WWW r+1 = ∪sss∈{sss1,...,sssNs}www
sss
r+1.

12: Find the output of WWW r+1 by query f(WWW ) at WWW r+1.
13: Update the observation set as

N (r + 1) = N (r) ∪ {(WWW r+1, f(WWW r+1))}.
14: r = r + 1.
15: end while

where wwwsss1:r and fsss(www
sss
1:r) indicate the input sequence and

corresponding outputs. The prior mean function is set to
zero function, i.e., ρsss0(wwwsss1:r) = 000, ∀sss ∈ {sss1, . . . , sssNs

}. Also,
Ksss

0(wwwsss1:r,www
sss
1:r) is the covariance matrix, which follows the

squared exponential covariance function as shown in (28).
Then, the mean function and covariance matrix of the original
black-box function in (25) is obtained as [40]

ρ0(WWW 1:r) =

sssNs∑
sss=sss1

ρsss0(wwwsss1:r), (40)

K0(WWW 1:r,WWW 1:r) =

sssNs∑
sss=sss1

Ksss
0(WWWsss

1:r,www
sss
1:r). (41)

As mentioned before, the original black-box function is de-
composed to Ns sub-functions, and then we apply the stan-
dard BO to solve each sub-function. We obtain the posterior
distribution of f(wwwsss) based on the prior distribution and the
training set N (r) as

fsss(www
sss)|N (r) ∼ N

(
ρsssr(www

sss), σsssr
2(wwwsss)

)
. (42)

where ρsssr(www
sss) and σsssr

2(wwwsss) denote the posterior mean and
variance of sub-function fsss(wwwsss), which are calculated as [40]:

ρsssr(www
sss) = Ksss

0(wwwsss,wwwsss1:r)K0(www1:r,www1:r)
−1f(WWW 1:r), (43)

σ2
r(WWW ) = Ksss

0(wwwsss,wwwsss) (44)

−Ksss
0(wwwsss,wwwsss1:r)K

sss
0(www1:r, rrr1:r)

−1Ksss
0(WWW 1:r,www

sss).

The decomposed objective functions are independent, and thus
the corresponding surrogate model and acquisition functions
are updated in the decomposed sub-space domains with the
corresponding posterior mean and variance.
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D. Proposed Solution

Here, the proposed solution for (6) using BO and the
additive structure is presented. As shown in Algorithm 1, we
first create the initial training setN (r) with r training samples,
which includes the input data and the corresponding output
data under f(WWW ). Each input is randomly generated punc-
turing weights over all channels and possible system states.
We decompose the search space, initial training set, and the
original objective function into Ns parts. From step 5 to step
9 in algorithm 1, we find the next sampling point in each sub-
space. As step 8 shows, with the posterior mean and variance
of each sub-function, we apply the acquisition function in the
sub-space to maximally determine where to sample the next
sub-objective function. The corresponding output data in each
sub-space is found by putting the obtained sampling data in
step 8 into the sub-objective function. Then the new sampling
data for original objective function is obtained as shown in
step 11 and 12. After updating the training set, we iterate
between step 2 and step 14 until reaching a maximum number
of iterations, i.e, R.

E. Computational Complexity

It has been proved that the computational complexity of the
BO algorithm is an order of O(r∗3), where r∗ is the number
of samples evaluated until convergence [41], [42]. This com-
putational complexity is dominantly due to the computations
required to find the posterior. The computation of the posterior
requires the computation of the inverse of the kernel matrix,
whose size depends on the number of sample evaluations.
More specifically, in the derivation process of ρr(WWW ) in
(30) and σ2

r(WWW ) in (31), the computational complexity is
dominated by the matrix inverse K−10 (WWW 1:r,WWW 1:r) in (28).
Based on [39]–[42], the standard methods for matrix inversion
of positive definite symmetric matrices require computational
time complexity O(r3) for inversion of an r by r matrix.
Therefore, it can be concluded that the complexity of the
proposed algorithm only grows cubic in the number of sample
evaluations r∗. With the additive structure, the proposed so-
lution in Algorithm 1 further enhances the time efficiency of
BO by decomposing the black-box function into several parts
and optimizing them in parallel. This will reduce the number
of sample evaluations required for convergence.

Besides, the proposed scheme is suitable for time-critical ap-
plications. Since this paper considers a stochastic optimization
of URLLC scheduling, the algorithm finds an optimal schedul-
ing solution for each possible system state combination. With
the optimized results for the system states distribution, the BS
could choose the eMBB puncturing weights at the beginning of
each decision slot based on which rates the channels undergo.
Thus, the complexity of the proposed algorithm does not
directly influence the URLLC latency requirement.

V. RESULTS

In this section, we first validate the accuracy of the ex-
pressions that analyze the URLLC queue in Section III. The
results also show the influence of the queuing mechanism in
URLLC requirements. After that, we compare the optimization
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Figure 3. The instantaneous mean latency of served URLLC packets (i.e., α)
versus the puncturing weights of all channels (i.e., w).

ability of different acquisition functions with a limited initial
training sets. The optimization results of proposed solution are
presented in terms of the total normalized eMBB throughput
and the utility of URLLC. We evaluated the performance of
our proposed queuing mechanism by comparing it with two
benchmarks, i.e., the immediate dropping policy in most of
the existing works [13]–[18] and the scheduling scheme in
[20]. After implementing the joint eMBB-URLLC systems of
the benchmarks, the results show that the proposed queuing
mechanism in this paper not only enhances the probability of
not dropping URLLC packets within the target latency but also
improves the total normalized eMBB throughput.

A. Simulation Setup
According to [15], each URLLC packet should be transmit-

ted within one millisecond, and the scheduling time should be
no more than 0.3 milliseconds. 3GPP has suggested that the
duration of each eMBB time slot is set to one millisecond with
a mini-slot duration of 0.125 milliseconds [11], [15]. Thus,
each eMBB slot contains M = 8 URLLC mini-slots in this
paper. Same as [15], where the authors considered a finite set
of eMBB channel rates with equal probability and i.i.d. across
users and slots , in this paper, the set of possible channel rates
for an eMBB user is assumed as C = {0.1, 0.5, 1} Mbps. We
considered all combinations of system states and assumed all
possible system states have equal probability of being chosen.
The URLLC packets were generated randomly in each mini-
slot based on the Poisson distribution with the arrival rate λ
packets/mini-slot. The maximum number of the iterations in
Algorithm 1 is set to R = 200. Each experiment was repeated
30 times, and the results show the averaged values.

B. The Performance of the Queuing Mechanism
First, we investigate the influence of the queue-based

scheduling on the URLLC requirements assuming the punc-
turing weights are the same over all the channels, i.e., wb =
w,∀b ∈ B. We define α as the ratio of the expected number
of served URLLC packets that were waited for one mini-slot
in the queue before transmission (i.e., E[Qm−1]− E[Dm]) to
the expected number of total served URLLC packets as

α =
E[Qm−1]− E[Dm]

E[µm]
. (45)
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Figure 4. The number of served packets that have waited for two mini-slots
(i.e., β) versus the puncturing weights of all channels (i.e., w).
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Figure 5. The number of dropped URLLC packets (i.e., E[Dm]) versus the
puncturing weights of all channels (i.e., w).
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Figure 6. The number of queued URLLC packets (i.e., E[Qm−1]) versus the
puncturing weights of all channels (i.e., w).

The measure α shows the percentage of the served URLLC
packets that need to be queued to satisfy the ultra-reliability
requirement. It also stands for the mean latency of the served
packets in each mini-slot. A higher α indicates that with the
queue, the BS could transmit more URLLC packets, whereas
a small value of α shows the system can transmit URLLC
packets directly without queuing.

Fig. 3 shows α versus the puncturing weight (i.e. w)
when the URLLC arrival load is λ = 0.5 packets/mini-slot.
This result confirms the validity of the analytical results in
Section III, since there is no significant difference between
the analytical and numerical results. The mean square errors
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Figure 7. The convergence of the proposed algorithm with different acquisi-
tion functions in comparison with the random search when B = 2.

between analytical and numerical results are below 10−3.
This figure also shows that increasing the puncturing weights
will reduce the instantaneous mean latency of served URLLC
packets to 0.18 mini-slot for B = 2 and further to zero if there
are more channels available (e.g., B = 5 and B = 8).

To further present how the BS wisely schedules the URLLC
packets with the queuing mechanism, Fig. 4 presents the
analytical and numerical results of the number of served
URLLC packets that have waited one mini-slot in the queue,
i.e.,

β = E[Qm−1]− E[Dm]. (46)

At first, the values of β increase when increasing the intensity
of w. For example, when B = 2 and w = 0.5, the value
of β increases from zero to 0.351 packets. This is because
both queued and dropped URLLC packets reduce when the BS
decides to puncture more mini-slots. However, the decreasing
ratio of E[Dm] (as shown in Fig. 5) is higher than the
decreasing ratio of E[Qm−1] (as shown in Fig. 6), since with
larger values of w, the URLLC packets have a higher chance
to be served rather than dropped. However, after the peak
points, the BS provides enough mini-slots for URLLC packets,
the number of dropped URLLC packets approaches zero (as
shown in Fig. 5), and the results show decreasing trends only
because of the number of queued URLLC packets reduces.

Furthermore, Fig. 4 also shows that if there are enough
channels, the peak points of β are smaller, and the number
of queued URLLC packets could quickly approach zero. For
example, in Fig. 4, comparing the results of B = 2 and B = 8,
with more transmission channels, the peak point of β is smaller
and the trend drops more quickly. Especially when w = 0.7,
the BS achieves the URLLC requirements with both of the
number of queued and dropped packets are zero for B = 8.
However, for B = 2, even with w = 1, the URLLC packets
still need to be queued to achieve a higher served rate. Besides,
the results in Fig. 4, Fig. 5 and Fig. 6 also show that the
analytical results match well with the numerical results.

C. Bayesian Optimization Convergence and Performance

In this subsection, we first investigate the convergence of
the proposed algorithm to find the optimal solution of the
optimization problem (6) as compared to the random search.
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Figure 8. The convergence of the proposed algorithm with different acquisi-
tion functions in comparison with the random search when B = 4.
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Figure 9. The convergence of proposed algorithm with different trade-off
parameter ξ when B = 2.

The initial training set N (r) contains r = 5 training samples.
The URLLC arrival load is λ = 0.1 packets/mini-slot. Here,
we first set ξ = 0.01 as the trade-off parameter between
exploitation and exploration since it is the most recommended
default value in BO literature [32], [36], [39], [40]. Later,
the influence of different values of ξ will be explored in this
section. The probability of URLLC successful transmission is
sburllc = 0.9,∀b ∈ B.

Fig. 7 and Fig. 8 show convergence behaviors of the
proposed algorithm with different acquisition functions in
comparison with the random search when transmitting under
different numbers of channels. In Fig. 7, for B = 2, it is
shown that all acquisition functions could sense larger local
points than the random search. In this case, the convergence
time is short since the original input space is relatively small
with d = 18. However, by increasing the number of channels
B = 4 as in Fig. 8, the set of possible system states is
significantly expanded (Ns = 81). This leads to a higher
dimensional input space, i.e., d = 324 and hence longer
convergence time. Overall, all three acquisition functions could
obtain satisfactory optimization results, and the EI acquisition
function shows a better convergence performance than others.
Thus, we choose the EI acquisition function for the following
results.

Here, we also study the impact of the amount of explo-
ration of the EI acquisition function by modifying ξ. Fig. 9
shows the convergence of the proposed algorithm with the
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Figure 10. The convergence of proposed algorithm in comparison with the
random search and grid search when B = 1.

EI acquisition function when applying different values of ξ
to find the optimal solution of the optimization problem (6).
We consider four different levels of trade-off parameters, i.e.,
ξ ∈ {0.001, 0.01, 0.3, 3}. In Fig. 9, for ξ = 0.01, the proposed
algorithm converges in a few iterations. However, a much
lower value of ξ = 0.001 puts the focus on ‘more local’
optimization rather than exploration for global optimization by
choosing the next sampling point with higher posterior mean.
Therefore, the algorithm does not reach to the optimal solution
in 200 iterations as for ξ = 0.01. With ξ = 0.3, the algorithm
converges to the optimal point as ξ = 0.01 but more slowly
compared to the case of ξ = 0.01, since increasing the trade-
off parameter increases exploration in the acquisition criterion.
Increasing ξ to ξ = 3 will further slow down the convergence
due to more exploration and this results in not reaching the
maximum in the first 200 iterations. Therefore, we choose to
use ξ = 0.01 in the simulations since it will strike a good
balance between exploration and exploitation.

Besides, Fig. 10 shows the performance of the proposed
algorithm to achieve the global maximum in comparison
with the random search. The global maximum is obtained
by evaluating all possible combinations of inputs in the grid
search. The number of possible combinations of the puncturing
weights in gird search grows exponentially as the number of
transmission channels increases. Thus, we consider the case
that B = 1 in which the number of possible system states is
Ns = 3 and the dimensional input space is d = 3. Let assume
the puncturing weights in the gird search belongs to the range
of [0, 1] in step size of 0.1. Thus, the number of all possible
combinations is 113 = 1331. Fig. 10 confirms the capability
of the proposed BO-based algorithm in reaching to the optimal
global solution. It is shown that the solution from the Bayesian
optimization provides the minimal expected deviation from
the global minimum/maximum and the asymptotic density of
calculations of the objective function is much greater around
the point of global minimum/maximum [43], [44].

In contrast, the random search slowly progress and cannot
reach the global point as only parts of the values of the
puncturing weights are tried out. The advantage of proposed
solution is that it chooses only the relevant search space
and discards the ranges that will most likely not deliver the
best solution. Thus, instead of randomly choosing the next
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Figure 11. The optimal results versus the URLLC packet arrival rate (i.e.,
λ) for the proposed queuing scheme when using BO-based proposed solution
and random search.

sampling point, the proposed algorithm optimizes the surrogate
model and acquisition function according to the previous
sampling points at each iteration.

To further investigate the performance of the proposed
algorithm, Fig. 11 shows the optimal value of the objective
function achieved by the proposed algorithm with EI acqui-
sition function versus the URLLC packet arrival rate. These
results verify the effectiveness of the proposed algorithm in
comparison with the random search. In particular, the gap in
the performance is significant for the higher URLLC arrival
rate. This is because the performance is sensitive to the
puncturing weights when the BS needs to serve more of
URLLC packets.

D. Performance Comparison with Benchmarks

We implemented two benchmarks to highlight the perfor-
mance of proposed URLLC queuing scheme in the trade-off
problem of the joint eMBB-URLLC system.

1) Benchmark 1: Immediate Dropping Scheme: In this
scheme, if the newly arrived URLLC packets cannot be
transmitted, such packets will be dropped immediately as the
losses. Obviously, such policy increases the number of URLLC
drops, and to optimize the probability of not dropping URLLC
packets, more mini-slots of eMBB services will be interrupted.

2) Benchmark 2: Scheduling Scheme in [20]: In this
scheme, each transmission channel has an individual URLLC
queue. The newly arrived packets are distributed evenly among
these queues, oblivious to the channel gains.

To evaluate the performance of the proposed scheme, in
Fig. 12 to Fig. 17, the total normalized eMBB throughput,
the URLLC utility, and the URLLC outage probability are
analyzed in comparison with two benchmarks. The URLLC
arrival rate in Fig. 12 to Fig. 17 changed from 0.01 to 0.1
packets/mini-slot. The objective functions were optimized by
the proposed algorithm when using Expected Improvement
as the acquisition function. Moreover, we also compare the
influence of the probability of URLLC successful transmission
on the performance of the proposed scheme. The probability
of URLLC successful transmission in Fig. 12 to Fig. 14
is sburllc = 0.9,∀b ∈ B and in Fig. 15 to Fig. 17 is
sburllc = 0.8,∀b ∈ B.
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Figure 12. The total normalized eMBB throughput (i.e., UeMBB) versus the
URLLC served rate for the proposed solution and benchmarks (BCHM) when
sburllc = 0.9, ∀b ∈ B.
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Figure 13. The URLLC outage probability (i.e., Pout) versus the URLLC
served rates for the proposed solution and benchmarks (BCHM) when
sburllc = 0.9, ∀b ∈ B.
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Figure 14. The URLLC utility (i.e., Uurllc) versus the URLLC served rates for
the proposed solution and benchmarks (BCHM) when sburllc = 0.9, ∀b ∈ B.

Fig. 12 shows the total normalized eMBB throughput (i.e.,
UeMBB =

∑
sss∈S PsssU

sss
eMBB) versus the URLLC served rate

(i.e., E [µm]) under different numbers of channels. The results
confirm that the our proposed solution with one queue offers
the highest eMBB throughput as compared with Benchmarks 1
and 2. Overall, the proposed solution could maintain the total
normalized eMBB throughput above 80%, even when B = 2.
Although Benchmark 2 performs better than Benchmark 1, the
scheduling in [20] is less flexible than our proposed solution
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Figure 15. The total normalized eMBB throughput (i.e., UeMBB) versus the
URLLC served rate for the proposed solution and benchmarks (BCHM) when
sburllc = 0.8, ∀b ∈ B.

with one queue due to even distribution of packets among
channels. In the proposed solution with one queue, the URLLC
packets are distributed considering the channel conditions of
different channels. Besides, as shown in Fig. 12, by queuing
the URLLC packets, the total normalized eMBB throughput of
both the proposed solution and Benchmark 2 are robust with
serving more URLLC packets. In contract, in Benchmark 1,
the total normalized eMBB throughput is more sensitive to
URLLC served rate.

Furthermore, the performance under all three schemes could
be improved by increasing the number of transmission chan-
nels. But no-queue scheme is much more sensitive to the
number of channels. In Fig. 12, when the URLLC arrival
load is λ = 0.02 packets/mini-slot, the calculated E[µm] of
the no-queue scheme in the cases of B = 2 and B = 6 are
0.01981 and 0.01631 packets/mini-slot, respectively. And the
total normalized eMBB throughput can be improved from 77%
to 86% when changing the number of channels form B = 6
to B = 2. However, the total normalized eMBB throughput
of the proposed solution only has a small change.

To further assess the influence on the probability of not
dropping URLLC packets, we define the URLLC outage
probability as

Pout = 1−
∑
sss∈S

Psss(sss)U
sss
urllc. (47)

Fig. 13 shows the URLLC outage probability versus the
expected value of served URLLC packets (i.e., E[µm]) under
the proposed solution and benchmarks. In Fig. 13, with more
channels, all three schemes could reduce the URLLC outage
probabilities and enhance the expected values of URLLC
served rates. However, the outage probabilities are signifi-
cantly lower with our proposed solution with one URLLC
queue.

Fig. 14 shows the URLLC utility (i.e., Uurllc =∑
sss∈S PsssU

sss
urllc) versus the URLLC served rate (i.e., E [µm])

under different numbers of channels. The results confirm that
the proposed solution provides the highest URLLC utility
compared to the other two benchmarks. Besides, with increas-
ing the URLLC arrivals, the URLLC utility decreases. This is
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Figure 16. The URLLC outage probability (i.e., Pout) versus the URLLC
served rates for the proposed solution and benchmarks (BCHM) when
sburllc = 0.8, ∀b ∈ B.
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Figure 17. The URLLC utility (i.e., Uurllc) versus the URLLC served rates for
the proposed solution and benchmarks (BCHM) when sburllc = 0.8, ∀b ∈ B.

due to the increase of both the URLLC outage probability and
the number of failures in transmitted URLLC packets.

Furthermore, we investigate the influence of the probabil-
ity of URLLC successful transmission by setting sburllc =
0.8,∀b ∈ B in Fig. 15-Fig. 17, and compare them to the corre-
sponding results in Fig. 12-Fig. 14 where sburllc = 0.9,∀b ∈ B.
In Fig. 15, the total normalized eMBB throughput values are
smaller than the results in Fig. 12. This is because with a
lower probability of URLLC successful transmission, the BS
will thrive to maintain the URLLC utility by puncturing more
eMBB transmissions. Thus, the number of served URLLC
packets increases, and Fig.16 shows decreasing trends of
URLLC outage probabilities compared to Fig. 13. However,
the overall URLLC utility in Fig. 17 is smaller compared
to Fig. 14, which implies that the number of successfully
transmitted URLLC packets decreases. In contrast, the pro-
posed URLLC queue mechanism robustly provides stable
probabilities of not dropping URLLC regardless of Surllc.

Overall, compared to the the benchmarks, the proposed
URLLC scheduling policy with the queuing mechanism could
enhance the URLLC reliability within the target latency with-
out causing a significant influence on the eMBB transmissions.

VI. CONCLUSIONS

In this paper, we developed an optimal URLLC scheduling
policy on top of scheduled eMBB channels considering a
URLLC queuing mechanism. The scheduling problem has
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been formulated as a stochastic optimization problem aiming
to maximize the total normalized eMBB throughput and
URLLC utility. By studying the queue dynamics, we math-
ematically analyzed the expected value of served URLLC
packets and probability of not dropping URLLC packets to
derive the objective function. However, it is infeasible to have a
closed-form expression due to the computational complexities
of deriving the steady-state solution of the URLLC queue.
Thus, we applied Bayesian optimization combined with the ad-
ditive structure algorithm to solve the high dimensional black-
box scheduling optimization. The results illustrated that the
proposed novel queuing scheme could enhance the probability
of not dropping URLLC packets within the target latency re-
quirement in each mini-slot and maintain the total normalized
eMBB throughput among all system states. Furthermore, the
results also showed that the Bayesian algorithm performed
well in finding an optimal point of the black-box function
compared with the random search. We also implemented
the no-queue scheme and the scheduling scheme in [20] as
benchmarks. The results indicated that the optimal URLLC
scheduling policy with the proposed queuing scheme has a
better flexibility and significantly outperforms the other two
scheduling policies in maintaining the total eMBB throughput
and reducing the probability of not dropping URLLC packets.
Future cellular networks could consider applying the proposed
queue mechanism model to a model-free joint eMBB/URLLC
scheduling problem by applying deep reinforcement learn-
ing algorithms. In addition, the existing DRL-based algo-
rithms were designed to only maximize the expected long-
term reward without considering the variance of the reward
distribution. Thus, future cellular networks should be aware
of the potential risks caused by the randomness of long-
term rewards and develop more robust joint eMBB/URLLC
scheduling strategies.
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