This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Supporting information for "Dodecahedral W@WC composite as efficient catalyst for hydrogen evolution and Nitrobenzene reduction reactions"

PLEASE CITE THE PUBLISHED VERSION

LICENCE

CC BY-NC 4.0

REPOSITORY RECORD

Chen, Zhao-Yang, Long-Fa Duan, Tian Sheng, Xiao Lin, Ya-Feng Chen, You-Qun Chu, Shi-Gang Sun, and Wen-Feng Lin. 2017. "Supporting Information for "dodecahedral W@WC Composite as Efficient Catalyst for Hydrogen Evolution and Nitrobenzene Reduction Reactions"". figshare.
https://doi.org/10.17028/rd.Iboro.5117692.v1.

Supporting Information

Dodecahedral W@WC Composite as Efficient Catalyst for Hydrogen Evolution and Nitrobenzene Reduction Reactions

Zhao-Yang Chen, ${ }^{\dagger}$ Long-Fa Duan, ${ }^{\dagger}$ Tian Sheng, ${ }^{\perp}$ Xiao Lin, ${ }^{\S}$ Ya-Feng Chen, ${ }^{\ddagger}$ You-Qun Chu, ${ }^{* \dagger}$ Shi-Gang Sun, ${ }^{\perp}$ and Wen-Feng Lin ${ }^{*, \neq}$

${ }^{\dagger}$ State Key Laboratory Breeding Base for Green Chemistry Synthesis Technology, International Sci. \& Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering and Materials Science, Zhejiang University of Technology,18 Chaowang Road, Hangzhou 310032, P R China
${ }^{\dagger}$ Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom
${ }^{\perp}$ Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P R China
${ }^{\S}$ Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom
email address:
*Wen-Feng Lin : W.Lin@lboro.ac.uk
*You-Qun Chu : Chuyq@zjut.edu.cn

$$
W(110) @ W C_{1 L} \quad W(110) @ W C_{2 L} \quad W C(0001)
$$

Figure S1. Top and side views of $W(100) @ W_{1 L}$ [one layer of $W C$ on $W(100)$], $\mathrm{W}(100) @ \mathrm{WC}_{2 \mathrm{~L}}$ [two layers of WC on $\mathrm{W}(100)$] and $\mathrm{WC}(0001)$ models used in the DFT calculations. Cyan: W, grey: C.

Figure S2. Schematic diagram of the setup used for the synthesis of W@WC.

Figure S3. Photos showing the arrangements of the carbon felts used to testify the moving feature of gaseous $\mathrm{WO}_{2}(\mathrm{OH})_{2}$, and the SEM images of the carbon felt surfaces before and after the carburation of the sample. Carbon felt was used to testify the moving feature of gaseous $\mathrm{WO}_{2}(\mathrm{OH})_{2}$. In this process, $\mathrm{WO}_{2}(\mathrm{OH})_{2}$ could be collected, and then be reduced by reductive gas around the carbon felt, which was placed close to the sample with the distance less than 4 cm . The collected moving mass of W was evidenced by the SEM images, showing a noticeable amount of W nanoparticles on the surface of the first carbon felt placed closest to the sample.

Figure S4. SEM images of the sample reduced under pure and dry H_{2} gas at $850^{\circ} \mathrm{C}$ for 12 h .

Figure S5. Particle size distribution of the spherical AMT precursor and the dodecahedral W@WC product.

Figure S6. (a) AMT balls prepared by spray drying; (b) decomposition of AMT; (c) selfassembly of microboulder; (d) W@WC with dodecahedral microstructure.

Figure S7. (a) STEM imaging and (b, c) simultaneous 2D STEM-EDS mapping from a representative W@WC; (d, e) Schematic diagram for the point 2 and 3; (f, g) the chemical components of the point 2 and 3 according to the EDS spectra. The EDS taken on the edges (e.g., point 2; serving as a probe for the shell) of a particle, shows that $\mathrm{W}: \mathrm{C}$ atomic ratio is close to $1: 1$, whilst that taken on the middle (e.g., point 3 , serving as a probe for the whole of shell and core) of a face of the particle showing a significant higher W:C ratio of $\sim 3: 1$.

Figure S8. a) XRD pattern, b) SEM image and c) pore size distribution of a reference sample synthesized by carburizing the spray dried AMT with a dry $\mathrm{CO} / \mathrm{CO}_{2}$ mixture.

Figure S9. (a) Thermogravimetric curves, and (b) the corresponding derivative thermogravimetric curves for the W@WC and WC samples.

Figure S10. XPS spectra of the W@WC sample showing (a) C 1s and (b) Survey scan. In (b), the Au features are due to the fact that Au spraying was applied to the sample surface before the XPS measurements; $\mathrm{Au} 4 \mathrm{f}_{7 / 2}(84.0 \mathrm{eV})$ was chosen as the reference line.

Figure S11. Cyclic voltammograms (CVs) of the W@WC and Pt/C in $0.1 \mathrm{HClO}_{4}$ supporting electrolyte solution; scan rate is $50 \mathrm{mVs}^{-1}$.

Figure S12. Optimized structures of hydrogen adsorption on $\mathrm{W}(110) @ \mathrm{WC}_{1 \mathrm{~L}}, \mathrm{~W}(110) @ \mathrm{WC}_{2 \mathrm{~L}}$ and WC(0001) surfaces. Cyan: W, grey: C, white: H.

Figure S13. a) Cyclic voltammograms (CVs) of W@WC, meso-WC, nano-WC, W and a Pt / C in 0.1 M TBAP DMF solution containing 0.03 M nitrobenzene, the scan rate is $50 \mathrm{mVs}^{-1}$. b) CVs of the prepared W@WC in 0.1 M TBAP DMF solution containing 0.03 M nitrobenzene with different scan rates (v), the inset shows relationship between $v^{1 / 2}$ and the cathodic peak current density. The NB electrochemical reduction process on the W@WC is evidenced to have the liquid-phase mass transfer as the limiting factor but not adsorption and surface reaction, thanks to the high activity of the W@WC electrode. c) Cyclic voltammogram (CV) of the as prepared W@WC sample in 0.1 M TBAP DMF supporting electrolyte solution. d) CV of the calcined W@WC in supporting electrolyte 0.1 M TBAP DMF solution.

Figure S14. SEM images of the other carbides and metal samples obtained by using a similar synthesis process as reported here; (a) $\mathrm{MoC}(\mathrm{Mo})$, (b) $\mathrm{W}_{2} \mathrm{C}$ and (c) Al .

