Numerical investigation of aircraft high-speed runway exit using generalized optimal control

2018-05-01T14:03:39Z (GMT) by Zexin Huang Matt Best James Knowles
To aim at reducing aircraft turnaround time and improving airport operation efficiency, this paper considers the optimization of aircraft ground manoeuvres such as a high-speed runway exit. The aircraft on the ground is a highly nonlinear dynamical system described by a fully parameterized mathematical model. The full aircraft model used in this paper has been further developed to include combined slip tire model. An iterative simulation-based optimization algorithm known as Generalized Optimal Control is employed to investigate the optimal solution for the control input such as nose-gear steering, main-gear brakes and engine thrust. To achieve different control objectives, the cost function is defined accordingly and then minimized by GOC. The optimization results of GOC will help to explore the safety boundary of ground handling and guide the design of a real-time controller.

Keyword(s)

License

CC BY-NC-ND 4.0