Loughborough University
Browse
- No file added yet -

Full vehicle and tyre identification using unscented and extended identifying Kalman Filters

Download (919.03 kB)
conference contribution
posted on 2016-09-15, 10:53 authored by Matt BestMatt Best, Karol Bogdanski
This paper considers identification of all significant vehicle handling and driveline dynamics of a test vehicle, including identification of a combined-slip tyre model, using only those sensors currently available on most vehicle CAN buses. The method extends previous work using augmented Kalman Filter state estimators to concentrate wholly on parameter identification, and it compares Extended and Unscented Kalman filter algorithms. Using an appropriately simple but efficient model structure, all of the independent parameters are found from test vehicle data, with the resulting model accuracy demonstrated on independent validation data. The method is suited to applications of system identification, but also in on-line model predictive controllers or estimators. It can also operate in real-time, so the model could be continuously identified to maintain accuracy with each new journey.

Funding

This work is supported by Jaguar Land Rover and the UK-EPSRC grant EP/K014102/1 as part of the jointly funded Programme for Simulation Innovation (PSi).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

13th International Symposium on Advanced Vehicle Control

Citation

BEST, M.C. and BOGDANSKI, K., 2016. Full vehicle and tyre identification using unscented and extended identifying Kalman Filters. IN: Pfeffer, P. (ed.). Proceedings of the 13th International Symposium on Advanced Vehicle Control, Munich, Germany, 13-16th Sept. CRC Press, pp. 497-502.

Publisher

© Taylor and Francis

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2016-04-05

Publication date

2016

Notes

This is an Accepted Manuscript of a book chapter published by Routledge in Proceedings of the 13th International Symposium on Advanced Vehicle Control on 6 December 2016, available online: http://dx.doi.org/10.1201/9781315265285-79

ISBN

9781138029927

Language

  • en

Location

Munich, Germany

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC