RC74.pdf (890.37 kB)

Thermal interface materials - a review of the state of the art

Download (890.37 kB)
conference contribution
posted on 10.02.2009, 13:12 by Farhad Sarvar, David Whalley, Paul Conway
The past few decades have seen an escalation of power densities in electronic devices, and in particular in microprocessor chips. Together with the continuing trend of reduction in device dimensions this has led to dramatic increase in the thermal issues within electronic circuits. Thermal management is therefore becoming increasingly more critical and fundamental to ensuring that electronic devices operate within their specification. Although a thermal management system may make use of all modes of heat transfer to maintain temperatures within their appropriate limits and to ensure optimum performance and reliability, conductive heat transfer is typically used to spread the heat out from its point of generation and into the extended surface area of a heat sink. To minimise the contact resistance, thermal interface materials (TIMs) are introduced to the joint to fill the air gaps and are an essential part of an assembly when solid surfaces are attached together. This paper reviews the conventional interface materials and then goes on to present a comprehensive review of the emerging state-of-the-art research in the use of carbon nanotube based materials. The paper also outlines the advantages and disadvantages of each TIM category and the factors that need to be considered when selecting an interface material

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Citation

SARVAR, F., WHALLEY, D.C. and CONWAY, P.P., 2006. Thermal interface materials - a review of the state of the art. IN: Proceedings of the 1st IEEE Electronic Systemintegration Technology Conference, Dresden, 5-7th September 2006, vol. 2, pp. 1292-1302

Publisher

© IEEE

Version

VoR (Version of Record)

Publication date

2006

Notes

This is a conference paper [© IEEE]. It is also available from: http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4060679. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

ISBN

142440553x

Language

en

Exports

Logo branding

Keywords

Exports