Loughborough University
Browse

Supplementary information files for Evaluating the Activity and Stability of Perovskite LaMO3-Based Pt Catalysts in the Aqueous Phase Reforming of Glycerol

Download (3.94 MB)
dataset
posted on 2022-05-19, 15:20 authored by Donald Inns, Alexander J. Mayer, Vainius Skukauskas, Thomas E. Davies, June Callison, Simon KondratSimon Kondrat

Supplemental files for article Evaluating the Activity and Stability of Perovskite LaMO3-Based Pt Catalysts in the Aqueous Phase Reforming of Glycerol


Abstract The aqueous phase reforming of glycerol, to hydrogen, alkanes and liquid phase dehydration/dehydrogenation products, was studied over a series of 1 wt% Pt/LaMO3 (where M = Al, Cr, Mn, Fe, Co, Ni) catalysts and compared to a standard 1 wt% Pt/γ-Al2O3 catalyst. The sol–gel combustion synthesis of lanthanum-based perovskites LaMO3 produced pure phase perovskites with surface areas of 8–18 m2g−1. Glycerol conversions were higher than the Pt/γ-Al2O3 (10%) for several perovskite supported catalysts, with the highest being for Pt/LaNiO3 (19%). Perovskite-based catalysts showed reduced alkane formation and significantly increased lactic acid formation compared to the standard catalyst. However, most of the perovskite materials undergo phase separation to LaCO3OH and respective M site oxides with Pt particle migration. The exception being the LaCrO3 support which was found to remain structurally stable. Catalytic performance remained stable over several cycles, for catalysts M = Al, Cr and Ni, despite phase separation of some of these materials. Materials where M site leaching into solution was observed (M = Mn and Co), were found to be catalytically unstable, which was hypothesised to be due to significant loss in support surface area and uncontrolled migration of Pt to the remaining support surface. In the case of Pt/LaNiO3 alloying between the exsoluted Ni and Pt was observed post reaction.

Funding

EPSRC Centre for Doctoral Training in Fuel Cells and their Fuels - Clean Power for the 21st Century

Engineering and Physical Sciences Research Council

Find out more...

The UK Catalysis Hub -'Core'

Engineering and Physical Sciences Research Council

Find out more...

The UK Catalysis Hub - 'Science': 1 - Optimising, predicting and designing new Catalysts

Engineering and Physical Sciences Research Council

Find out more...

The UK Catalysis Hub - 'Science': 2 Catalysis at the Water-Energy Nexus

Engineering and Physical Sciences Research Council

Find out more...

Hub 'Science' 3: Catalysis for the Circular Economy and Sustainable Manufacturing

Engineering and Physical Sciences Research Council

Find out more...

History

School

  • Science

Department

  • Chemistry

Usage metrics

    Chemistry

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC