Reflectarray antennas have attracted extensive attention due to their low loss, high gain, compact volume and their excellent abilities to control the radiated beam. The use of dielectric resonators as the reflectarray elements minimizes the ohmic loss and the coupling between elements. This paper uses fused deposition modelling (FDM) 3D-printing rapidly prototyping a low-cost and light-weight dielectric resonator reflectarray. The demonstrated reflectarray is composed of 625 3D-printed dielectric resonator elements to control the reflected phase over the reflector surface. The total size is 12 × 12 cm2 and the mass is 67g. Measurements show that this reflectarray provides 28 dBi gain at 30 GHz when offset fed by a Ka-band horn antenna. This work demonstrates the potential of FDM for millimetre wave (mm-wave) applications. The new 3Dprinting approach can be deployed for high-gain mm-wave antenna fabrication with significantly reduced labour time and material costs.
Funding
The author’s work is supported by EPSRC Doctoral Prize Research Fellowship.
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
IET Microwaves Antennas and Propagation
Citation
ZHANG, S., 2017. 3D-printed millimetre wave dielectric resonator reflectarray. IET Microwaves Antennas and Propagation, 11 (14), pp. 2005-2009.
Publisher
Institution of Engineering and Technology
Version
VoR (Version of Record)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/
Acceptance date
2017-09-12
Publication date
2017
Notes
This is an Open Access Article. It is published by IET under the Creative Commons Attribution 3.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/ The accepted version will be replaced by the published version once this is available.