Loughborough University
Browse
- No file added yet -

Automatic detection of blurred images in UAV image sets

Download (1.38 MB)
journal contribution
posted on 2016-11-02, 13:27 authored by Till Sieberth, Rene Wackrow, Jim Chandler
Unmanned aerial vehicles (UAV) have become an interesting and active research topic for photogrammetry. Current research is based on images acquired by an UAV, which have a high ground resolution and good spectral and radiometrical resolution, due to the low flight altitudes combined with a high resolution camera. UAV image flights are also cost effective and have become attractive for many applications including, change detection in small scale areas. One of the main problems preventing full automation of data processing of UAV imagery is the degradation effect of blur caused by camera movement during image acquisition. This can be caused by the normal flight movement of the UAV as well as strong winds, turbulence or sudden operator inputs. This blur disturbs the visual analysis and interpretation of the data, causes errors and can degrade the accuracy in automatic photogrammetric processing algorithms. The detection and removal of these images is currently achieved manually, which is both time consuming and prone to error, particularly for large image-sets. To increase the quality of data processing an automated process is necessary, which must be both reliable and quick. This paper describes the development of an automatic filtering process, which is based upon the quantification of blur in an image. Images with known blur are processed digitally to determine a quantifiable measure of image blur. The algorithm is required to process UAV images fast and reliably to relieve the operator from detecting blurred images manually. The newly developed method makes it possible to detect blur caused by linear camera displacement and is based on human detection of blur. Humans detect blurred images best by comparing it to other images in order to establish whether an image is blurred or not. The developed algorithm simulates this procedure by creating an image for comparison using image processing. Creating internally a comparable image makes the method independent of additional images. However, the calculated blur value named SIEDS (saturation image edge difference standard-deviation) on its own does not provide an absolute number to judge if an image is blurred or not. To achieve a reliable judgement of image sharpness the SIEDS value has to be compared to other SIEDS values from the same dataset. The speed and reliability of the method was tested using a range of different UAV datasets. Two datasets will be presented in this paper to demonstrate the effectiveness of the algorithm. The algorithm proves to be fast and the returned values are optically correct, making the algorithm applicable for UAV datasets. Additionally, a close range dataset was processed to determine whether the method is also useful for close range applications. The results show that the method is also reliable for close range images, which significantly extends the field of application for the algorithm.

History

School

  • Architecture, Building and Civil Engineering

Published in

ISPRS Journal of Photogrammetry and Remote Sensing

Volume

122

Pages

1 - 16

Citation

SIEBERTH, T., WACKROW, R. and CHANDLER, J.H., 2016. Automatic detection of blurred images in UAV image sets. ISPRS Journal of Photogrammetry and Remote Sensing, 122, pp. 1-16.

Publisher

© 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2016-09-22

Publication date

2016-10-19

Notes

This paper was accepted for publication in the journal ISPRS Journal of Photogrammetry and Remote Sensing and the definitive published version is available at http://dx.doi.org/10.1016/j.isprsjprs.2016.09.010

ISSN

0924-2716

eISSN

1872-8235

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC