File(s) under permanent embargo

Reason: This item is currently closed access.

Microstructure-based multiphysics modeling for semiconductor integration and packaging

journal contribution
posted on 15.10.2014, 08:57 authored by Zhiheng Huang, Hua Xiong, Zhiyong Wu, Paul ConwayPaul Conway, Hugh Davies, Alan Dinsdale, Yunfei En, Qingfeng Zeng
Semiconductor technology and packaging is advancing rapidly toward system integration where the packaging is co-designed and co-manufactured along with the wafer fabrication. However, materials issues, in particular the mesoscale microstructure, have to date been excluded from the integrated product design cycle of electronic packaging due to the myriad of materials used and the complex nature of the material phenomena that require a multiphysics approach to describe. In the context of the materials genome initiative, we present an overview of a series of studies that aim to establish the linkages between the material microstructure and its responses by considering the multiple perspectives of the various multiphysics fields. The microstructure was predicted using thermodynamic calculations, sharp interface kinetic models, phase field, and phase field crystal modeling techniques. Based on the predicted mesoscale microstructure, linear elastic mechanical analyses and electromigration simulations on the ultrafine interconnects were performed. The microstructural index extracted by a method based on singular value decomposition exhibits a monotonous decrease with an increase in the interconnect size. An artificial neural network-based fitting revealed a nonlinear relationship between the microstructure index and the average von Mises stress in the ultrafine interconnects. Future work to address the randomness of microstructure and the resulting scatter in the reliability is discussed in this study.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

CHINESE SCIENCE BULLETIN

Volume

59

Issue

15

Pages

1696 - 1708 (13)

Citation

HUANG, Z. ... et al, 2014. Microstructure-based multiphysics modeling for semiconductor integration and packaging. Chinese Science Bulletin, 59 (15), pp.1696-1708.

Publisher

© Science China Press and Springer

Version

NA (Not Applicable or Unknown)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2014

ISSN

1001-6538

Language

en