Loughborough University
Browse

Multidimensional analysis for the correlation of physico-chemical attributes to osteoblastogenesis in TiNbZrSnTa alloys

Download (10.34 MB)
journal contribution
posted on 2023-08-10, 15:29 authored by Carmen TorresCarmen Torres, E Alabort, O Herring, H Bell, Cheuk TamCheuk Tam, S Yang, Paul ConwayPaul Conway

Data-enabled approaches that complement experimental testing offer new capabilities to investigate the interplay between chemical, physical and mechanical attributes of alloys and elucidate their effect on biological behaviours. Reported here, instead of physical causation, statistical correlations were used to study the factors responsible for the adhesion, proliferation and maturation of pre-osteoblasts MC3T3-E1 cultured on Titanium alloys. Eight alloys with varying wt% of Niobium, Zirconium, Tin and Tantalum (Ti— (2–22 wt%)Nb— (5–20 wt%)Zr— (0–18 wt%)Sn— (0–14 wt%)Ta) were designed to achieve exemplars of allotropes (incl., metastable-β, β + α′, α″). Following confirmation of their compositions (ICP, EDX) and their crystal structure (XRD, SEM), their compressive bulk properties were measured and their surface features characterised (XPS, SFE). Because these alloys are intended for the manufacture of implantable orthopaedic devices, the correlation focuses on the effect of surface properties on cellular behaviour. Physico-chemical attributes were paired to biological performance, and these highlight the positive interdependencies between oxide composition and proliferation (esp. Ti4+), and maturation (esp. Zr4+). The correlation reveals the negative effect of oxide thickness, esp. TiOx and TaOx on osteoblastogenesis. This study also shows that the characterisation of the chemical state and elemental electronic structure of the alloys' surface is more predictive than physical properties, namely SFE and roughness.

Funding

EPSRC Centre for Doctoral Training in Embedded Intelligence

Engineering and Physical Sciences Research Council

Find out more...

Embedded Integrated Intelligent Systems for Manufacturing

Engineering and Physical Sciences Research Council

Find out more...

Re-Imagining Engineering Design: Growing Radical Cyber-Physical-Socio Phenotypes

Engineering and Physical Sciences Research Council

Find out more...

Wolfson School Research Scholarships and Bursaries Scheme

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Biomaterials Advances

Volume

153

Publisher

Elsevier

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2023-07-25

Publication date

2023-07-28

Copyright date

2023

ISSN

2772-9516

eISSN

2772-9508

Language

  • en

Depositor

Prof Carmen Torres-Sanchez. Deposit date: 28 July 2023

Article number

213572

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC