posted on 2021-12-17, 10:17authored byJunyi Wang, Zewen Ji, Huaguang Zhang, Zhanshan Wang, Qinggang MengQinggang Meng
This article focuses on the synchronization problem of delayed inertial neural networks (INNs) with generally uncertain Markovian jumping and their applications in image encryption. The random connection weight strengths and generally uncertain Markovian are discussed in the INNs model. Compared with most existing INNs models that have constant connection weight strengths, our model is more practical because connection weight strengths of INNs may randomly vary due to the external and internal environment and human factor. The delay-range-dependent synchronization conditions (DRDSCs) could be obtained by adopting the delay-product-term Lyapunov-Krasovskii functional (DPTLKF) and higher order polynomial-based relaxed inequality (HOPRII). In addition, the desired controllers are obtained by solving a set of linear matrix inequalities. Finally, two examples are shown to demonstrate the effectiveness of the proposed results.
Funding
National Natural Science Foundation of China under Grant 61903075 and Grant U20A20197
Project of Liaoning Province Science and Technology Program under Grant 2019-KF-03-02
Fundamental Research Funds for the Central Universities under Grant N2026003
History
School
Science
Department
Computer Science
Published in
IEEE Transactions on Neural Networks and Learning Systems
Volume
34
Issue
9
Pages
5911 - 5925
Publisher
Institute of Electrical and Electronics Engineers (IEEE)