To know what applications are currently in operation across modem packet based
communication networks such as the Internet is always attractive to network
administrators, network service providers and security systems. The availability of this
information can contribute to preventing improper network use, which may include illegal
activities, consume a large amount of bandwidth, or may cause security problems or break
policies in network usage. In addition, using this information, the network may be able to
establish enhanced environments for the applications, which are in use.
Various techniques exist to perform network application detection. However difficulty is
encountered where the traditional techniques will fail in their task. For example, if the
application uses non-registered port numbers, the capture of certain specific packets is
impossible or the data portion of at least some of the packets is unavailable due to
encryption or processing overload.
In this Thesis an alternative approach to application detection, using packet size
distributions, is applied to TCP applications. This statistical property of the traffic stream
is found to be unique to certain kinds of network applications. The detection can be
achieved by simply comparing this "fingerprint" with pre-evaluated samples stored in a
database. Previous work has shown that packet size distributions can successfully identify
many types ofUDP application.
This Thesis suggests that for those TCP-based network applications that do not use the
Nagle Algorithm, the detection mechanism, which had been proved to be successful for
UDP-based applications, could be also adopted without any modification. For Naglebased
applications, the situation becomes more complicated, however, with some precomputation,
successful detection can be achieved as well. A prototype detector
implementing the suggested approaches has been designed in order to test the feasibility
and performance of the approach proposed. The tests carried out upon this prototype
platform indicate that the method is universally suitable for several of distributions and
give out satisfied detection success ratios.
History
School
Mechanical, Electrical and Manufacturing Engineering