posted on 2017-06-08, 09:06authored byConstantinos S. Xydeas
The increasing use of digital communication systems has
produced a continuous search for efficient methods of speech
encoding.
This thesis describes investigations of novel differential
encoding systems. Initially Linear First Order DPCM systems
employing a simple delayed encoding algorithm are examined.
The systems detect an overload condition in the encoder, and
through a simple algorithm reduce the overload noise at the
expense of some increase in the quantization (granular) noise.
The signal-to-noise ratio (snr) performance of such d codec has
1 to 2 dB's advantage compared to the First Order Linear DPCM
system.
In order to obtain a large improvement in snr the high
correlation between successive pitch periods as well as the
correlation between successive samples in the voiced speech
waveform is exploited. A system called "Pitch Synchronous
First Order DPCM" (PSFOD) has been developed. Here the difference
Sequence formed between the samples of the input sequence in the
current pitch period and the samples of the stored decoded
sequence from the previous pitch period are encoded. This
difference sequence has a smaller dynamic range than the original
input speech sequence enabling a quantizer with better resolution
to be used for the same transmission bit rate. The snr is increased
by 6 dB compared with the peak snr of a First Order DPCM codea.
A development of the PSFOD system called a Pitch Synchronous
Differential Predictive Encoding system (PSDPE) is next investigated.
The principle of its operation is to predict the next sample in
the voiced-speech waveform, and form the prediction error which
is then subtracted from the corresponding decoded prediction
error in the previous pitch period. The difference is then
encoded and transmitted. The improvement in snr is approximately
8 dB compared to an ADPCM codea, when the PSDPE system uses an
adaptive PCM encoder. The snr of the system increases further
when the efficiency of the predictors used improve. However,
the performance of a predictor in any differential system is
closely related to the quantizer used. The better the quantization
the more information is available to the predictor and the better
the prediction of the incoming speech samples. This leads
automatically to the investigation in techniques of efficient
quantization. A novel adaptive quantization technique called
Dynamic Ratio quantizer (DRQ) is then considered and its theory
presented. The quantizer uses an adaptive non-linear element
which transforms the input samples of any amplitude to samples
within a defined amplitude range. A fixed uniform quantizer
quantizes the transformed signal. The snr for this quantizer
is almost constant over a range of input power limited in practice
by the dynamia range of the adaptive non-linear element, and it
is 2 to 3 dB's better than the snr of a One Word Memory adaptive
quantizer.
Digital computer simulation techniques have been used widely
in the above investigations and provide the necessary experimental
flexibility. Their use is described in the text.
History
School
Mechanical, Electrical and Manufacturing Engineering
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
1978
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.