posted on 2018-09-21, 10:46authored byYingjie Yang
Spatial and temporal information exist widely in engineering fields, especially
in airport environmental management systems. Airport environment is influenced
by many different factors and uncertainty is a significant part of the
system. Decision support considering this kind of spatial and temporal information
and uncertainty is crucial for airport environment related engineering
planning and operation. Geographical information systems and computer aided
design are two powerful tools in supporting spatial and temporal information
systems. However, the present geographical information systems and computer
aided design software are still too general in considering the special features in
airport environment, especially for uncertainty. In this thesis, a series of parameters
and methods for neural network-based knowledge discovery and training
improvement are put forward, such as the relative strength of effect, dynamic
state space search strategy and compound architecture. [Continues.]
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2008
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy at Loughborough University.