Thesis-2016-Alesemi.pdf (26.75 MB)
Download fileNumerical and analytical study of the convective Cahn-Hilliard equation
thesis
posted on 2016-06-23, 09:00 authored by Meshari AlesemiWe consider the convective Cahn-Hilliard equation that is used as a model of coarsening dynamics
in driven systems and that in two spatial dimensions (x; y) has the form
ut + Duux + r2(u u3 + r2u) = 0:
Here t denotes time, u = u(x; y; t) is the order parameter and D is the parameter measuring
the strength of driving. We primarily consider the case of one spatial dimension, when there is
no y-dependence. For the case of no driving, when D = 0, the standard Cahn-Hilliard equation
is recovered, and it is known that solutions to this equation are characterised by an initial
stage of phase separation into regions of one phase surrounded by the other phase (i.e., clusters
or droplets/holes or islands are obtained) followed by the coarsening process, where the
average size of the clusters grows in time and the number of the clusters decreases. Moreover,
two main coarsening mechanisms have been identified in the literature, namely, coarsening due
to volume and translational modes. On the other hand, for the case of strong driving, when
D ! 1, the well-known Kuramoto-Sivashinsky equation is recovered, solutions of which are
characterised by complicated chaotic oscillations in both space and time. The primary aim of
the present thesis is to perform a detailed and systematic investigation of the transitions in the
solutions of the convective Cahn-Hilliard equation for a wide range of parameter values as the
driving-force parameter is increased, and, in particular, to understand in detail how the coarsening
dynamics is affected by driving. We find that one of the coarsening modes is stabilised
at relatively small values of D, and the type of the unstable coarsening mode may change as
D increases. In addition, we find that there may be intervals in the driving-force parameter D
where coarsening is completely stabilised. On the other hand, there may be intervals where twomode
solutions are unstable and the solutions can evolve, for example, into one-droplet/hole
solutions, symmetry-broken two-droplet/hole solutions or time-periodic solutions. We present
detailed stability diagrams for 2-mode solutions in the parameter planes and corroborate our
findings by time-dependent simulations. Finally, we present preliminary results for the case of
the (convective) Cahn-Hilliard equation in two spatial dimensions.
History
School
- Science
Department
- Mathematical Sciences
Publisher
© Meshari AlesemiPublisher statement
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/Publication date
2016Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.Language
- en