Loughborough University
Thesis-1998-Chung.pdf (7.51 MB)

Prediction of zone temperatures, cooling loads and illuminances from numerical simulation of the interaction between fluorescent lighting and HVAC systems

Download (7.51 MB)
posted on 2018-05-31, 14:16 authored by Tse-Ming Chung
A numerical model has been developed for the dynamic simulation of heat and radiation transfer from lamps and ballasts in an enclosure. The model, named LITEAC1, calculates temperatures, cooling loads and illuminances at each simulation time step. LITEAC1 is an improvement upon existing models in the literature in the following aspects: it performs dynamic simulation for all nodes without assuming that some nodes are massless; it calculates illuminances on room surfaces; and it runs faster on a desktop computer. In order to refine the simulation of the two-way interaction between lighting and HVAC systems, a fluorescent lamp positive column discharge model, named LAMPPC, has been incorporated into LITEAC1 to improve calculation of the conversion of input electrical energy into light, thermal radiation and heat. LAMPPC employs established principles in plasma physics to quantify the energy conversion processes. [Continues.]


Hong Kong Polytechnic University.



  • Architecture, Building and Civil Engineering


© T.M. Chung

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date



A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy at Loughborough University.


  • en