posted on 2014-08-01, 16:33authored byElijah Mwangi
The work presented in this thesis concerns the recognition of
isolated words using a pattern matching approach. In such a system,
an unknown speech utterance, which is to be identified, is
transformed into a pattern of characteristic features. These
features are then compared with a set of pre-stored reference
patterns that were generated from the vocabulary words. The unknown
word is identified as that vocabulary word for which the reference
pattern gives the best match.
One of the major difficul ties in the pattern comparison process is
that speech patterns, obtained from the same word, exhibit non-linear
temporal fluctuations and thus a high degree of redundancy. The
initial part of this thesis considers various dynamic time warping
techniques used for normalizing the temporal differences between
speech patterns. Redundancy removal methods are also considered, and
their effect on the recognition accuracy is assessed.
Although the use of dynamic time warping algorithms provide
considerable improvement in the accuracy of isolated word recognition
schemes, the performance is ultimately limited by their poor ability
to discriminate between acoustically similar words. Methods for
enhancing the identification rate among acoustically similar words,
by using common pattern features for similar sounding regions, are
investigated.
Pattern matching based, speaker independent systems, can only operate
with a high recognition rate, by using multiple reference patterns
for each of the words included in the vocabulary. These patterns are
obtained from the utterances of a group of speakers. The use of
multiple reference patterns, not only leads to a large increase in
the memory requirements of the recognizer, but also an increase in
the computational load. A recognition system is proposed in this
thesis, which overcomes these difficulties by (i) employing vector
quantization techniques to reduce the storage of reference patterns,
and (ii) eliminating the need for dynamic time warping which reduces
the computational complexity of the system.
Finally, a method of identifying the acoustic structure of an
utterance in terms of voiced, unvoiced, and silence segments by using
fuzzy set theory is proposed. The acoustic structure is then
employed to enhance the recognition accuracy of a conventional
isolated word recognizer.
History
School
Mechanical, Electrical and Manufacturing Engineering